Jakub Jernajczyk
{"title":"Jak pokazać to, czego pokazać nie można? O obrazowaniu liczb niewymiernych","authors":"Jakub Jernajczyk","doi":"10.19195/1895-8001.15.3.2","DOIUrl":null,"url":null,"abstract":"In this article, I would like to draw attention to the cognitive potential of an image, showing how significant the role of visual imagination in mathematics is. I will focus here mainly on the possibilities of visualizing irrational numbers.Our starting point is the intuitive case of the square root of two, observed in the diagonal of a square. We will also discuss a simple, geometrical method of constructing the square roots of all integers. Next, we move over to the golden ratio, hidden in a regular pentagon. We will use a looped, endless animation to visualize the irrational number φ. Then we will have a closer look at the famous number π and discuss two different attempts to find its visual representation. In the last two sections of the article, we consider the possibility of indicating rational and irrational real numbers and also grasp the whole set of real numbers.All the issues discussed in this article have inspired visual artists to create artworks that can help to understand relatively advanced mathematical problems.","PeriodicalId":262683,"journal":{"name":"Studia Philosophica Wratislaviensia","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Philosophica Wratislaviensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19195/1895-8001.15.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我想提请注意图像的认知潜力,展示视觉想象力在数学中的重要作用。我在这里主要关注无理数形象化的可能性。我们的出发点是一个直观的情况,根号2,在一个正方形的对角线上观察到。我们还将讨论构造所有整数的平方根的一种简单的几何方法。接下来,我们转向黄金比例,隐藏在一个正五边形中。我们将使用一个循环的、无限的动画来可视化无理数φ。然后,我们将仔细看看著名的数字π,并讨论两种不同的尝试,以找到它的视觉表示。在文章的后两节中,我们考虑了表示有理数和无理数的可能性,并掌握了实数的整个集合。本文中讨论的所有问题都启发了视觉艺术家创造出有助于理解相对高级数学问题的艺术品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jak pokazać to, czego pokazać nie można? O obrazowaniu liczb niewymiernych
In this article, I would like to draw attention to the cognitive potential of an image, showing how significant the role of visual imagination in mathematics is. I will focus here mainly on the possibilities of visualizing irrational numbers.Our starting point is the intuitive case of the square root of two, observed in the diagonal of a square. We will also discuss a simple, geometrical method of constructing the square roots of all integers. Next, we move over to the golden ratio, hidden in a regular pentagon. We will use a looped, endless animation to visualize the irrational number φ. Then we will have a closer look at the famous number π and discuss two different attempts to find its visual representation. In the last two sections of the article, we consider the possibility of indicating rational and irrational real numbers and also grasp the whole set of real numbers.All the issues discussed in this article have inspired visual artists to create artworks that can help to understand relatively advanced mathematical problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信