通用自治规划:理论

J. Weng
{"title":"通用自治规划:理论","authors":"J. Weng","doi":"10.1142/s0219843620500164","DOIUrl":null,"url":null,"abstract":"The universal Turing Machine (TM) is a model for Von Neumann computers — general-purpose computers. A human brain, linked with its biological body, can inside-skull-autonomously learn a universal TM so that he acts as a general-purpose computer and writes a computer program for any practical purposes. It is unknown whether a robot can accomplish the same. This theoretical work shows how the Developmental Network (DN), linked with its robot body, can accomplish this. Unlike a traditional TM, the TM learned by DN is a super TM — Grounded, Emergent, Natural, Incremental, Skulled, Attentive, Motivated, and Abstractive (GENISAMA). A DN is free of any central controller (e.g., Master Map, convolution, or error back-propagation). Its learning from a teacher TM is one transition observation at a time, immediate, and error-free until all its neurons have been initialized by early observed teacher transitions. From that point on, the DN is no longer error-free but is always optimal at every time instance in the sense of maximal likelihood, conditioned on its limited computational resources and the learning experience. This paper extends the Church–Turing thesis to a stronger version — a GENISAMA TM is capable of Autonomous Programming for General Purposes (APFGP) — and proves both the Church–Turing thesis and its stronger version.","PeriodicalId":312776,"journal":{"name":"Int. J. Humanoid Robotics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Autonomous Programming for General Purposes: Theory\",\"authors\":\"J. Weng\",\"doi\":\"10.1142/s0219843620500164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The universal Turing Machine (TM) is a model for Von Neumann computers — general-purpose computers. A human brain, linked with its biological body, can inside-skull-autonomously learn a universal TM so that he acts as a general-purpose computer and writes a computer program for any practical purposes. It is unknown whether a robot can accomplish the same. This theoretical work shows how the Developmental Network (DN), linked with its robot body, can accomplish this. Unlike a traditional TM, the TM learned by DN is a super TM — Grounded, Emergent, Natural, Incremental, Skulled, Attentive, Motivated, and Abstractive (GENISAMA). A DN is free of any central controller (e.g., Master Map, convolution, or error back-propagation). Its learning from a teacher TM is one transition observation at a time, immediate, and error-free until all its neurons have been initialized by early observed teacher transitions. From that point on, the DN is no longer error-free but is always optimal at every time instance in the sense of maximal likelihood, conditioned on its limited computational resources and the learning experience. This paper extends the Church–Turing thesis to a stronger version — a GENISAMA TM is capable of Autonomous Programming for General Purposes (APFGP) — and proves both the Church–Turing thesis and its stronger version.\",\"PeriodicalId\":312776,\"journal\":{\"name\":\"Int. J. Humanoid Robotics\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Humanoid Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219843620500164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Humanoid Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219843620500164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

通用图灵机(TM)是冯·诺依曼计算机(通用计算机)的一个模型。人类的大脑与其生物身体相连,可以在头骨内自主地学习通用TM,这样他就像一台通用计算机,可以为任何实际目的编写计算机程序。目前还不清楚机器人是否能做到这一点。这项理论工作展示了与机器人身体相连的发育网络(DN)是如何实现这一目标的。与传统TM不同,DN学习的TM是一种超级TM——基础TM、突发TM、自然TM、增量TM、头脑TM、专注TM、动机TM和抽象TM (GENISAMA)。DN没有任何中央控制器(例如,主映射、卷积或错误反向传播)。它从教师TM中学习是一次一个过渡观察,即时的,无错误的,直到所有的神经元都被早期观察到的教师过渡初始化。从那时起,DN不再是无错误的,而是在最大似然意义上在每个时间实例中始终是最优的,这取决于其有限的计算资源和学习经验。本文将Church-Turing论题扩展到一个更强的版本——GENISAMA TM能够进行通用自治规划(APFGP)——并证明了Church-Turing论题及其更强的版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Programming for General Purposes: Theory
The universal Turing Machine (TM) is a model for Von Neumann computers — general-purpose computers. A human brain, linked with its biological body, can inside-skull-autonomously learn a universal TM so that he acts as a general-purpose computer and writes a computer program for any practical purposes. It is unknown whether a robot can accomplish the same. This theoretical work shows how the Developmental Network (DN), linked with its robot body, can accomplish this. Unlike a traditional TM, the TM learned by DN is a super TM — Grounded, Emergent, Natural, Incremental, Skulled, Attentive, Motivated, and Abstractive (GENISAMA). A DN is free of any central controller (e.g., Master Map, convolution, or error back-propagation). Its learning from a teacher TM is one transition observation at a time, immediate, and error-free until all its neurons have been initialized by early observed teacher transitions. From that point on, the DN is no longer error-free but is always optimal at every time instance in the sense of maximal likelihood, conditioned on its limited computational resources and the learning experience. This paper extends the Church–Turing thesis to a stronger version — a GENISAMA TM is capable of Autonomous Programming for General Purposes (APFGP) — and proves both the Church–Turing thesis and its stronger version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信