基于欧氏距离的人眼注视估计损失函数

Bu Sung Lee, Romphet Phattharaphon, Seanglidet Yean, Jigang Liu, Manoj Shakya
{"title":"基于欧氏距离的人眼注视估计损失函数","authors":"Bu Sung Lee, Romphet Phattharaphon, Seanglidet Yean, Jigang Liu, Manoj Shakya","doi":"10.1109/SAS48726.2020.9220051","DOIUrl":null,"url":null,"abstract":"The Loss function is an integral component in a Neural network. It affects the performance of CNN network in its classification. In this paper, we propose a Euclidean distance based Loss function for the CNN model, in an eye-gaze memory card game. We compared the Euclidean distance loss function with the well-known cross-entropy loss function. The performance parameters used in our comparison are prediction accuracy and average Euclidean distance prediction error. The results show that cross-entropy has better prediction accuracy. However, the Euclidean distance loss function provides a better average Euclidean distance prediction error resulting in better user experience. This is because the wrongly predicted eye gaze cards are near to the user intended card. In the case of cross-entropy, the predicted card error is quite evenly spread across the screen.","PeriodicalId":223737,"journal":{"name":"2020 IEEE Sensors Applications Symposium (SAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Euclidean Distance based Loss Function for Eye-Gaze Estimation\",\"authors\":\"Bu Sung Lee, Romphet Phattharaphon, Seanglidet Yean, Jigang Liu, Manoj Shakya\",\"doi\":\"10.1109/SAS48726.2020.9220051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Loss function is an integral component in a Neural network. It affects the performance of CNN network in its classification. In this paper, we propose a Euclidean distance based Loss function for the CNN model, in an eye-gaze memory card game. We compared the Euclidean distance loss function with the well-known cross-entropy loss function. The performance parameters used in our comparison are prediction accuracy and average Euclidean distance prediction error. The results show that cross-entropy has better prediction accuracy. However, the Euclidean distance loss function provides a better average Euclidean distance prediction error resulting in better user experience. This is because the wrongly predicted eye gaze cards are near to the user intended card. In the case of cross-entropy, the predicted card error is quite evenly spread across the screen.\",\"PeriodicalId\":223737,\"journal\":{\"name\":\"2020 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS48726.2020.9220051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS48726.2020.9220051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

损失函数是神经网络中不可缺少的组成部分。它会影响CNN网络的分类性能。在本文中,我们提出了一种基于欧氏距离的CNN模型损失函数,用于眼睛注视存储卡游戏。我们比较了欧氏距离损失函数和众所周知的交叉熵损失函数。在我们的比较中使用的性能参数是预测精度和平均欧氏距离预测误差。结果表明,交叉熵具有较好的预测精度。然而,欧氏距离损失函数提供了更好的平均欧氏距离预测误差,从而获得更好的用户体验。这是因为错误预测的眼睛注视卡靠近用户预期的卡。在交叉熵的情况下,预测的卡片错误相当均匀地分布在屏幕上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean Distance based Loss Function for Eye-Gaze Estimation
The Loss function is an integral component in a Neural network. It affects the performance of CNN network in its classification. In this paper, we propose a Euclidean distance based Loss function for the CNN model, in an eye-gaze memory card game. We compared the Euclidean distance loss function with the well-known cross-entropy loss function. The performance parameters used in our comparison are prediction accuracy and average Euclidean distance prediction error. The results show that cross-entropy has better prediction accuracy. However, the Euclidean distance loss function provides a better average Euclidean distance prediction error resulting in better user experience. This is because the wrongly predicted eye gaze cards are near to the user intended card. In the case of cross-entropy, the predicted card error is quite evenly spread across the screen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信