部分监督k调和均值聚类

T. Runkler
{"title":"部分监督k调和均值聚类","authors":"T. Runkler","doi":"10.1109/CIDM.2011.5949424","DOIUrl":null,"url":null,"abstract":"A popular algorithm for finding clusters in unlabeled data optimizes the k-means clustering model. This algorithm converges quickly but is sensitive to initialization. Two ways to overcome this drawback are fuzzification and harmonic means. We show that k-harmonic means is a special case of reformulated fuzzy k-means. The main focus of this paper is on partially supervised clustering. Partially supervised clustering finds clusters in data sets that contain both unlabeled and labeled data. We review partially supervised k-means, partially supervised fuzzy k-means, and introduce a partially supervised extension of k-harmonic means. Experiments with four benchmark data sets indicate that partially supervised k-harmonic means inherits the advantages of its completely unsupervised variant: It is significantly less sensitive to initialization than partially supervised k-means.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Partially supervised k-harmonic means clustering\",\"authors\":\"T. Runkler\",\"doi\":\"10.1109/CIDM.2011.5949424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A popular algorithm for finding clusters in unlabeled data optimizes the k-means clustering model. This algorithm converges quickly but is sensitive to initialization. Two ways to overcome this drawback are fuzzification and harmonic means. We show that k-harmonic means is a special case of reformulated fuzzy k-means. The main focus of this paper is on partially supervised clustering. Partially supervised clustering finds clusters in data sets that contain both unlabeled and labeled data. We review partially supervised k-means, partially supervised fuzzy k-means, and introduce a partially supervised extension of k-harmonic means. Experiments with four benchmark data sets indicate that partially supervised k-harmonic means inherits the advantages of its completely unsupervised variant: It is significantly less sensitive to initialization than partially supervised k-means.\",\"PeriodicalId\":211565,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2011.5949424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

一种在未标记数据中寻找聚类的流行算法优化了k-means聚类模型。该算法收敛速度快,但对初始化敏感。克服这一缺点的两种方法是模糊化和调和方法。我们证明了k调和均值是重新表述的模糊k均值的一种特殊情况。本文的重点是部分监督聚类。部分监督聚类在包含未标记和标记数据的数据集中查找聚类。我们回顾了部分监督k-means、部分监督模糊k-means,并引入了k调和均值的部分监督扩展。对四个基准数据集的实验表明,部分监督k-调和均值继承了其完全无监督变体的优点:它对初始化的敏感性明显低于部分监督k-均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partially supervised k-harmonic means clustering
A popular algorithm for finding clusters in unlabeled data optimizes the k-means clustering model. This algorithm converges quickly but is sensitive to initialization. Two ways to overcome this drawback are fuzzification and harmonic means. We show that k-harmonic means is a special case of reformulated fuzzy k-means. The main focus of this paper is on partially supervised clustering. Partially supervised clustering finds clusters in data sets that contain both unlabeled and labeled data. We review partially supervised k-means, partially supervised fuzzy k-means, and introduce a partially supervised extension of k-harmonic means. Experiments with four benchmark data sets indicate that partially supervised k-harmonic means inherits the advantages of its completely unsupervised variant: It is significantly less sensitive to initialization than partially supervised k-means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信