{"title":"部分监督k调和均值聚类","authors":"T. Runkler","doi":"10.1109/CIDM.2011.5949424","DOIUrl":null,"url":null,"abstract":"A popular algorithm for finding clusters in unlabeled data optimizes the k-means clustering model. This algorithm converges quickly but is sensitive to initialization. Two ways to overcome this drawback are fuzzification and harmonic means. We show that k-harmonic means is a special case of reformulated fuzzy k-means. The main focus of this paper is on partially supervised clustering. Partially supervised clustering finds clusters in data sets that contain both unlabeled and labeled data. We review partially supervised k-means, partially supervised fuzzy k-means, and introduce a partially supervised extension of k-harmonic means. Experiments with four benchmark data sets indicate that partially supervised k-harmonic means inherits the advantages of its completely unsupervised variant: It is significantly less sensitive to initialization than partially supervised k-means.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Partially supervised k-harmonic means clustering\",\"authors\":\"T. Runkler\",\"doi\":\"10.1109/CIDM.2011.5949424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A popular algorithm for finding clusters in unlabeled data optimizes the k-means clustering model. This algorithm converges quickly but is sensitive to initialization. Two ways to overcome this drawback are fuzzification and harmonic means. We show that k-harmonic means is a special case of reformulated fuzzy k-means. The main focus of this paper is on partially supervised clustering. Partially supervised clustering finds clusters in data sets that contain both unlabeled and labeled data. We review partially supervised k-means, partially supervised fuzzy k-means, and introduce a partially supervised extension of k-harmonic means. Experiments with four benchmark data sets indicate that partially supervised k-harmonic means inherits the advantages of its completely unsupervised variant: It is significantly less sensitive to initialization than partially supervised k-means.\",\"PeriodicalId\":211565,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2011.5949424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A popular algorithm for finding clusters in unlabeled data optimizes the k-means clustering model. This algorithm converges quickly but is sensitive to initialization. Two ways to overcome this drawback are fuzzification and harmonic means. We show that k-harmonic means is a special case of reformulated fuzzy k-means. The main focus of this paper is on partially supervised clustering. Partially supervised clustering finds clusters in data sets that contain both unlabeled and labeled data. We review partially supervised k-means, partially supervised fuzzy k-means, and introduce a partially supervised extension of k-harmonic means. Experiments with four benchmark data sets indicate that partially supervised k-harmonic means inherits the advantages of its completely unsupervised variant: It is significantly less sensitive to initialization than partially supervised k-means.