具有种子、上下文和主题的实体列表提取的句子检索

Sheikh Muhammad Sarwar, John Foley, Liu Yang, J. Allan
{"title":"具有种子、上下文和主题的实体列表提取的句子检索","authors":"Sheikh Muhammad Sarwar, John Foley, Liu Yang, J. Allan","doi":"10.1145/3341981.3344250","DOIUrl":null,"url":null,"abstract":"We present a variation of the corpus-based entity set expansion and entity list completion task. A user-specified query and a sentence containing one seed entity are the input to the task. The output is a list of sentences that contain other instances of the entity class indicated by the input. We construct a semantic query expansion model that leverages topical context around the seed entity and scores sentences. The proposed model finds 46% of the target entity class by retrieving 20 sentences on average. It achieves 16% improvement over BM25 in terms of recall@20.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sentence Retrieval for Entity List Extraction with a Seed, Context, and Topic\",\"authors\":\"Sheikh Muhammad Sarwar, John Foley, Liu Yang, J. Allan\",\"doi\":\"10.1145/3341981.3344250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a variation of the corpus-based entity set expansion and entity list completion task. A user-specified query and a sentence containing one seed entity are the input to the task. The output is a list of sentences that contain other instances of the entity class indicated by the input. We construct a semantic query expansion model that leverages topical context around the seed entity and scores sentences. The proposed model finds 46% of the target entity class by retrieving 20 sentences on average. It achieves 16% improvement over BM25 in terms of recall@20.\",\"PeriodicalId\":173154,\"journal\":{\"name\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341981.3344250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个基于语料库的实体集扩展和实体列表完成任务的变体。用户指定的查询和包含一个种子实体的句子是任务的输入。输出是一个句子列表,其中包含输入所指示的实体类的其他实例。我们构建了一个语义查询扩展模型,该模型利用种子实体周围的主题上下文并对句子进行评分。提出的模型平均通过检索20个句子找到46%的目标实体类。在recall@20方面,它比BM25提高了16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentence Retrieval for Entity List Extraction with a Seed, Context, and Topic
We present a variation of the corpus-based entity set expansion and entity list completion task. A user-specified query and a sentence containing one seed entity are the input to the task. The output is a list of sentences that contain other instances of the entity class indicated by the input. We construct a semantic query expansion model that leverages topical context around the seed entity and scores sentences. The proposed model finds 46% of the target entity class by retrieving 20 sentences on average. It achieves 16% improvement over BM25 in terms of recall@20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信