基于频域全局优化算法的飞机颤振模型参数辨识

Jie Yao, Jiang-hong Wang
{"title":"基于频域全局优化算法的飞机颤振模型参数辨识","authors":"Jie Yao, Jiang-hong Wang","doi":"10.1109/WCICA.2012.6358314","DOIUrl":null,"url":null,"abstract":"With regard to the aircraft flutter flight test stochastic models coexisting input and output observation noise, this paper deduces the simplified form of the maximum likelihood cost function about the stochastic model by virtue of the frequency domain maximum likelihood estimation principle. Then a global optimization iterative convolution smoothing identification method is derived to significantly reduce the possibility of convergence to a local minimum and weakly dependent of the starting values' choice by using the global optimization theory. The identification method modifies the iterative method with a stochastic perturbation term and guarantees the algorithm converge to a global minimum. The simulation with real flight test data shows the efficiency of the algorithm.","PeriodicalId":114901,"journal":{"name":"Proceedings of the 10th World Congress on Intelligent Control and Automation","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The aircraft flutter model parametric identification based on frequency domain global optimization algorithm\",\"authors\":\"Jie Yao, Jiang-hong Wang\",\"doi\":\"10.1109/WCICA.2012.6358314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With regard to the aircraft flutter flight test stochastic models coexisting input and output observation noise, this paper deduces the simplified form of the maximum likelihood cost function about the stochastic model by virtue of the frequency domain maximum likelihood estimation principle. Then a global optimization iterative convolution smoothing identification method is derived to significantly reduce the possibility of convergence to a local minimum and weakly dependent of the starting values' choice by using the global optimization theory. The identification method modifies the iterative method with a stochastic perturbation term and guarantees the algorithm converge to a global minimum. The simulation with real flight test data shows the efficiency of the algorithm.\",\"PeriodicalId\":114901,\"journal\":{\"name\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th World Congress on Intelligent Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCICA.2012.6358314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2012.6358314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对同时存在输入和输出观测噪声的飞机颤振飞行试验随机模型,利用频域最大似然估计原理,推导了该随机模型的最大似然代价函数的简化形式。然后,利用全局优化理论推导出一种全局优化迭代卷积平滑辨识方法,该方法显著降低了收敛到局部极小值的可能性,并且对起始值选择的依赖性较弱。该辨识方法采用随机扰动项对迭代法进行改进,保证了算法收敛到全局最小值。用实际飞行试验数据进行了仿真,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The aircraft flutter model parametric identification based on frequency domain global optimization algorithm
With regard to the aircraft flutter flight test stochastic models coexisting input and output observation noise, this paper deduces the simplified form of the maximum likelihood cost function about the stochastic model by virtue of the frequency domain maximum likelihood estimation principle. Then a global optimization iterative convolution smoothing identification method is derived to significantly reduce the possibility of convergence to a local minimum and weakly dependent of the starting values' choice by using the global optimization theory. The identification method modifies the iterative method with a stochastic perturbation term and guarantees the algorithm converge to a global minimum. The simulation with real flight test data shows the efficiency of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信