基于证据的连续全局贝叶斯模态融合多目标同步跟踪

J. Sherrah, S. Gong
{"title":"基于证据的连续全局贝叶斯模态融合多目标同步跟踪","authors":"J. Sherrah, S. Gong","doi":"10.1109/ICCV.2001.937596","DOIUrl":null,"url":null,"abstract":"Robust, real-time tracking of objects from visual data requires probabilistic fusion of multiple visual cues. Previous approaches have either been ad hoc or relied on a Bayesian network with discrete spatial variables which suffers from discretisation and computational complexity problems. We present a new Bayesian modality fusion network that uses continuous domain variables. The network architecture distinguishes between cues that are necessary or unnecessary for the object's presence. Computationally expensive and inexpensive modalities are also handled differently to minimise cost. The method provides a formal, tractable and robust probabilistic method for simultaneously tracking multiple objects. While instantaneous inference is exact, approximation is required for propagation over time.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Continuous global evidence-based Bayesian modality fusion for simultaneous tracking of multiple objects\",\"authors\":\"J. Sherrah, S. Gong\",\"doi\":\"10.1109/ICCV.2001.937596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust, real-time tracking of objects from visual data requires probabilistic fusion of multiple visual cues. Previous approaches have either been ad hoc or relied on a Bayesian network with discrete spatial variables which suffers from discretisation and computational complexity problems. We present a new Bayesian modality fusion network that uses continuous domain variables. The network architecture distinguishes between cues that are necessary or unnecessary for the object's presence. Computationally expensive and inexpensive modalities are also handled differently to minimise cost. The method provides a formal, tractable and robust probabilistic method for simultaneously tracking multiple objects. While instantaneous inference is exact, approximation is required for propagation over time.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

从视觉数据中对目标进行鲁棒、实时跟踪需要对多个视觉线索进行概率融合。以前的方法要么是特设的,要么依赖于具有离散空间变量的贝叶斯网络,这些网络存在离散化和计算复杂性问题。提出了一种新的使用连续域变量的贝叶斯模态融合网络。网络架构区分了对于对象的存在是必要的还是不必要的线索。计算上昂贵和便宜的模式也被不同地处理以最小化成本。该方法为同时跟踪多个目标提供了一种形式化、易于处理和鲁棒性强的概率方法。虽然瞬时推断是精确的,但随着时间的推移传播需要近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous global evidence-based Bayesian modality fusion for simultaneous tracking of multiple objects
Robust, real-time tracking of objects from visual data requires probabilistic fusion of multiple visual cues. Previous approaches have either been ad hoc or relied on a Bayesian network with discrete spatial variables which suffers from discretisation and computational complexity problems. We present a new Bayesian modality fusion network that uses continuous domain variables. The network architecture distinguishes between cues that are necessary or unnecessary for the object's presence. Computationally expensive and inexpensive modalities are also handled differently to minimise cost. The method provides a formal, tractable and robust probabilistic method for simultaneously tracking multiple objects. While instantaneous inference is exact, approximation is required for propagation over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信