非负矩阵的修正恒量

Shashank Vatedka, P. Vontobel
{"title":"非负矩阵的修正恒量","authors":"Shashank Vatedka, P. Vontobel","doi":"10.1109/SPCOM50965.2020.9179492","DOIUrl":null,"url":null,"abstract":"Currently the best deterministic polynomial-time algorithm for approximating the permanent of a non-negative matrix is based on minimizing the Bethe free energy function of a certain normal factor graph (NFG). In order to improve the approximation guarantee, we propose a modified NFG with fewer cycles, but still manageable function-node complexity; we call the approximation obtained by minimizing the function of the modified normal factor graph the modified Bethe permanent. For nonnegative matrices of size $3\\times 3$, we give a tight characterization of the modified Bethe permanent. For non-negative matrices of size $n\\times n$ with $n\\geq 3$, we present a partial characterization, along with promising numerical results. The analysis of the modified NFG is also interesting because of its tight connection to an NFG that is used for approximating a permanent-like quantity in quantum information processing.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified Bethe Permanent of a Nonnegative Matrix\",\"authors\":\"Shashank Vatedka, P. Vontobel\",\"doi\":\"10.1109/SPCOM50965.2020.9179492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently the best deterministic polynomial-time algorithm for approximating the permanent of a non-negative matrix is based on minimizing the Bethe free energy function of a certain normal factor graph (NFG). In order to improve the approximation guarantee, we propose a modified NFG with fewer cycles, but still manageable function-node complexity; we call the approximation obtained by minimizing the function of the modified normal factor graph the modified Bethe permanent. For nonnegative matrices of size $3\\\\times 3$, we give a tight characterization of the modified Bethe permanent. For non-negative matrices of size $n\\\\times n$ with $n\\\\geq 3$, we present a partial characterization, along with promising numerical results. The analysis of the modified NFG is also interesting because of its tight connection to an NFG that is used for approximating a permanent-like quantity in quantum information processing.\",\"PeriodicalId\":208527,\"journal\":{\"name\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM50965.2020.9179492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前逼近非负矩阵永久性的最佳确定性多项式时间算法是基于最小化某一正态因子图(NFG)的贝特自由能函数。为了提高近似保证,我们提出了一种改进的NFG,它具有更少的周期,但仍然具有可管理的功能节点复杂性;我们称通过最小化修正法向因子图的函数得到的近似为修正贝特永久函数。对于大小为$3\times 3$的非负矩阵,我们给出了改进的贝特永久矩阵的严密表征。对于尺寸为$n\times n$和$n\geq 3$的非负矩阵,我们给出了一个部分表征,以及有希望的数值结果。对改进后的NFG的分析也很有趣,因为它与用于在量子信息处理中近似永久量的NFG紧密相连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Bethe Permanent of a Nonnegative Matrix
Currently the best deterministic polynomial-time algorithm for approximating the permanent of a non-negative matrix is based on minimizing the Bethe free energy function of a certain normal factor graph (NFG). In order to improve the approximation guarantee, we propose a modified NFG with fewer cycles, but still manageable function-node complexity; we call the approximation obtained by minimizing the function of the modified normal factor graph the modified Bethe permanent. For nonnegative matrices of size $3\times 3$, we give a tight characterization of the modified Bethe permanent. For non-negative matrices of size $n\times n$ with $n\geq 3$, we present a partial characterization, along with promising numerical results. The analysis of the modified NFG is also interesting because of its tight connection to an NFG that is used for approximating a permanent-like quantity in quantum information processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信