基于社会网络的个性化商品推荐的概率模型

A. Chaney, D. Blei, Tina Eliassi-Rad
{"title":"基于社会网络的个性化商品推荐的概率模型","authors":"A. Chaney, D. Blei, Tina Eliassi-Rad","doi":"10.1145/2792838.2800193","DOIUrl":null,"url":null,"abstract":"Preference-based recommendation systems have transformed how we consume media. By analyzing usage data, these methods uncover our latent preferences for items (such as articles or movies) and form recommendations based on the behavior of others with similar tastes. But traditional preference-based recommendations do not account for the social aspect of consumption, where a trusted friend might point us to an interesting item that does not match our typical preferences. In this work, we aim to bridge the gap between preference- and social-based recommendations. We develop social Poisson factorization (SPF), a probabilistic model that incorporates social network information into a traditional factorization method; SPF introduces the social aspect to algorithmic recommendation. We develop a scalable algorithm for analyzing data with SPF, and demonstrate that it outperforms competing methods on six real-world datasets; data sources include a social reader and Etsy.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":"{\"title\":\"A Probabilistic Model for Using Social Networks in Personalized Item Recommendation\",\"authors\":\"A. Chaney, D. Blei, Tina Eliassi-Rad\",\"doi\":\"10.1145/2792838.2800193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preference-based recommendation systems have transformed how we consume media. By analyzing usage data, these methods uncover our latent preferences for items (such as articles or movies) and form recommendations based on the behavior of others with similar tastes. But traditional preference-based recommendations do not account for the social aspect of consumption, where a trusted friend might point us to an interesting item that does not match our typical preferences. In this work, we aim to bridge the gap between preference- and social-based recommendations. We develop social Poisson factorization (SPF), a probabilistic model that incorporates social network information into a traditional factorization method; SPF introduces the social aspect to algorithmic recommendation. We develop a scalable algorithm for analyzing data with SPF, and demonstrate that it outperforms competing methods on six real-world datasets; data sources include a social reader and Etsy.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"177\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2800193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177

摘要

基于偏好的推荐系统改变了我们消费媒体的方式。通过分析使用数据,这些方法揭示了我们对物品(如文章或电影)的潜在偏好,并根据具有相似品味的其他人的行为形成推荐。但传统的基于偏好的推荐并没有考虑到消费的社交方面,一个值得信赖的朋友可能会向我们推荐一件与我们的典型偏好不符的有趣物品。在这项工作中,我们的目标是弥合偏好和基于社会的推荐之间的差距。我们开发了社会泊松分解(SPF),这是一种将社会网络信息纳入传统分解方法的概率模型;SPF为算法推荐引入了社会性。我们开发了一种可扩展的算法,用于使用SPF分析数据,并证明它在六个真实数据集上优于竞争方法;数据来源包括社交阅读器和Etsy。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Probabilistic Model for Using Social Networks in Personalized Item Recommendation
Preference-based recommendation systems have transformed how we consume media. By analyzing usage data, these methods uncover our latent preferences for items (such as articles or movies) and form recommendations based on the behavior of others with similar tastes. But traditional preference-based recommendations do not account for the social aspect of consumption, where a trusted friend might point us to an interesting item that does not match our typical preferences. In this work, we aim to bridge the gap between preference- and social-based recommendations. We develop social Poisson factorization (SPF), a probabilistic model that incorporates social network information into a traditional factorization method; SPF introduces the social aspect to algorithmic recommendation. We develop a scalable algorithm for analyzing data with SPF, and demonstrate that it outperforms competing methods on six real-world datasets; data sources include a social reader and Etsy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信