利用传声器子阵列解决频域盲源分离中的置换问题

Wanlong Li, Ju Liu, Jun Du, Shuzhong Bai
{"title":"利用传声器子阵列解决频域盲源分离中的置换问题","authors":"Wanlong Li, Ju Liu, Jun Du, Shuzhong Bai","doi":"10.1109/ICNNSP.2008.4590311","DOIUrl":null,"url":null,"abstract":"Blind source separation for convolutive mixtures can be solved effectively in the frequency domain where independent component analysis is performed in each frequency independently. However, the permutation problem arises: the permutation ambiguity of ICA in each frequency bin should be aligned so that a separated signal in the time-domain contains frequency components of the same source signal. In this paper, we present a new method for solving the permutation problem using microphone sub-arrays. It is based on the combination of two approaches: direction of arrival (DOA) estimation for sources and the inter-frequency correlation of signal envelopes. First, DOA estimation is performed using microphone sub-arrays so that the permutation problem is solved more robustly in low frequencies. Second, we exploit the correlation between the adjacent bins to fix the permutation for the remaining frequencies. Experimental results show that the proposed method provided a more robust solution to the permutation problem in a real acoustic environment.","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving permutation problem in frequency-domain blind source separation using microphone sub-arrays\",\"authors\":\"Wanlong Li, Ju Liu, Jun Du, Shuzhong Bai\",\"doi\":\"10.1109/ICNNSP.2008.4590311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind source separation for convolutive mixtures can be solved effectively in the frequency domain where independent component analysis is performed in each frequency independently. However, the permutation problem arises: the permutation ambiguity of ICA in each frequency bin should be aligned so that a separated signal in the time-domain contains frequency components of the same source signal. In this paper, we present a new method for solving the permutation problem using microphone sub-arrays. It is based on the combination of two approaches: direction of arrival (DOA) estimation for sources and the inter-frequency correlation of signal envelopes. First, DOA estimation is performed using microphone sub-arrays so that the permutation problem is solved more robustly in low frequencies. Second, we exploit the correlation between the adjacent bins to fix the permutation for the remaining frequencies. Experimental results show that the proposed method provided a more robust solution to the permutation problem in a real acoustic environment.\",\"PeriodicalId\":250993,\"journal\":{\"name\":\"2008 International Conference on Neural Networks and Signal Processing\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Neural Networks and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNNSP.2008.4590311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在频域对卷积混合信号进行独立分量分析,可以有效地解决卷积混合信号的盲源分离问题。但是,出现了排列问题:ICA在每个频仓中的排列模糊性应该对齐,以便在时域中分离的信号包含相同源信号的频率分量。本文提出了一种利用传声器子阵列求解排列问题的新方法。它是基于两种方法的结合:源的到达方向估计和信号包络的频间相关。首先,利用传声器子阵列进行DOA估计,使低频下的排列问题得到更稳健的解决。其次,我们利用相邻箱子之间的相关性来固定剩余频率的排列。实验结果表明,该方法对真实声环境下的排列问题具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving permutation problem in frequency-domain blind source separation using microphone sub-arrays
Blind source separation for convolutive mixtures can be solved effectively in the frequency domain where independent component analysis is performed in each frequency independently. However, the permutation problem arises: the permutation ambiguity of ICA in each frequency bin should be aligned so that a separated signal in the time-domain contains frequency components of the same source signal. In this paper, we present a new method for solving the permutation problem using microphone sub-arrays. It is based on the combination of two approaches: direction of arrival (DOA) estimation for sources and the inter-frequency correlation of signal envelopes. First, DOA estimation is performed using microphone sub-arrays so that the permutation problem is solved more robustly in low frequencies. Second, we exploit the correlation between the adjacent bins to fix the permutation for the remaining frequencies. Experimental results show that the proposed method provided a more robust solution to the permutation problem in a real acoustic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信