玻璃中淬火的液体

Qing Wang, Ying-Hui Shang, Yong Yang
{"title":"玻璃中淬火的液体","authors":"Qing Wang, Ying-Hui Shang, Yong Yang","doi":"10.1088/2752-5724/acb8cf","DOIUrl":null,"url":null,"abstract":"Glasses have long been considered as frozen liquids because of the similarity between their static amorphous structures. While the modern theories about glass transition suggest that glass transition may result from supercooling of a heterogeneous liquid that contains fast and slow regions, it remains unclear whether such a physical picture applies to metallic glasses, which are a densely packed solid glass that was once believed to be a vitrified homogeneous metallic liquid. However, in the recent work published in Nature Materials, Chang et al provide compelling evidence to show that metallic glasses contain liquid-like atoms that behave as a high-temperature liquid in stress relaxation. Being activated under cyclic loading, this quenched-in liquid results in a fast relaxation process, which is discovered in a variety of metallic glasses. Their results are important and deliver a strong message that metallic glasses have a dynamic microstructure containing liquid- and solid-like atoms. Most importantly, the outcome of their research provides physical insight into the nature of glass-transition in metallic glasses, and also helps unravel their structure-property relations.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quenched-in liquid in glass\",\"authors\":\"Qing Wang, Ying-Hui Shang, Yong Yang\",\"doi\":\"10.1088/2752-5724/acb8cf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glasses have long been considered as frozen liquids because of the similarity between their static amorphous structures. While the modern theories about glass transition suggest that glass transition may result from supercooling of a heterogeneous liquid that contains fast and slow regions, it remains unclear whether such a physical picture applies to metallic glasses, which are a densely packed solid glass that was once believed to be a vitrified homogeneous metallic liquid. However, in the recent work published in Nature Materials, Chang et al provide compelling evidence to show that metallic glasses contain liquid-like atoms that behave as a high-temperature liquid in stress relaxation. Being activated under cyclic loading, this quenched-in liquid results in a fast relaxation process, which is discovered in a variety of metallic glasses. Their results are important and deliver a strong message that metallic glasses have a dynamic microstructure containing liquid- and solid-like atoms. Most importantly, the outcome of their research provides physical insight into the nature of glass-transition in metallic glasses, and also helps unravel their structure-property relations.\",\"PeriodicalId\":221966,\"journal\":{\"name\":\"Materials Futures\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Futures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5724/acb8cf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/acb8cf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于玻璃的静态无定形结构的相似性,玻璃一直被认为是冷冻液体。虽然关于玻璃化转变的现代理论表明,玻璃化转变可能是由含有快区和慢区的非均质液体的过冷引起的,但尚不清楚这种物理现象是否适用于金属玻璃,金属玻璃是一种致密的固体玻璃,曾被认为是玻璃化的均质金属液体。然而,在最近发表在《自然材料》(Nature Materials)杂志上的研究中,Chang等人提供了令人信服的证据,证明金属玻璃含有类似液体的原子,在应力松弛时表现为高温液体。在循环加载下被激活,这种淬火液体导致快速弛豫过程,这在各种金属玻璃中都有发现。他们的结果很重要,并且传递了一个强有力的信息,即金属玻璃具有包含液体和固体样原子的动态微观结构。最重要的是,他们的研究结果提供了对金属玻璃玻璃转变性质的物理见解,也有助于解开它们的结构-性质关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quenched-in liquid in glass
Glasses have long been considered as frozen liquids because of the similarity between their static amorphous structures. While the modern theories about glass transition suggest that glass transition may result from supercooling of a heterogeneous liquid that contains fast and slow regions, it remains unclear whether such a physical picture applies to metallic glasses, which are a densely packed solid glass that was once believed to be a vitrified homogeneous metallic liquid. However, in the recent work published in Nature Materials, Chang et al provide compelling evidence to show that metallic glasses contain liquid-like atoms that behave as a high-temperature liquid in stress relaxation. Being activated under cyclic loading, this quenched-in liquid results in a fast relaxation process, which is discovered in a variety of metallic glasses. Their results are important and deliver a strong message that metallic glasses have a dynamic microstructure containing liquid- and solid-like atoms. Most importantly, the outcome of their research provides physical insight into the nature of glass-transition in metallic glasses, and also helps unravel their structure-property relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信