生存随机森林预测时间填充

Summer M. Husband, J. Roberts
{"title":"生存随机森林预测时间填充","authors":"Summer M. Husband, J. Roberts","doi":"10.1109/ICDMW.2017.32","DOIUrl":null,"url":null,"abstract":"Traditionally, the time-to-fill metric is used as a scorecard for past performance. An organization may use time to fill to assess the performance of its internal recruiting team, or as a way to set service level agreements with outsourced recruiting partners. By first developing a set of quantifiable job features and then applying survival analysis to historical time-to-fill data, we build a predictor to assess the probability a job will remain open beyond its target time-to-fill date, enabling us to commit additional resources to high risk jobs at the beginning of the recruiting process.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Survival Random Forest to Predict Time to Fill\",\"authors\":\"Summer M. Husband, J. Roberts\",\"doi\":\"10.1109/ICDMW.2017.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, the time-to-fill metric is used as a scorecard for past performance. An organization may use time to fill to assess the performance of its internal recruiting team, or as a way to set service level agreements with outsourced recruiting partners. By first developing a set of quantifiable job features and then applying survival analysis to historical time-to-fill data, we build a predictor to assess the probability a job will remain open beyond its target time-to-fill date, enabling us to commit additional resources to high risk jobs at the beginning of the recruiting process.\",\"PeriodicalId\":389183,\"journal\":{\"name\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统上,填充时间度量被用作过去性能的记分卡。组织可能会利用时间来评估其内部招聘团队的绩效,或者作为与外包招聘合作伙伴建立服务水平协议的一种方式。首先,我们开发了一套可量化的职位特征,然后将生存分析应用于历史的职位空缺时间数据,我们建立了一个预测器来评估一个职位在其目标职位空缺日期之后仍然空缺的概率,使我们能够在招聘过程开始时为高风险职位投入额外的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Survival Random Forest to Predict Time to Fill
Traditionally, the time-to-fill metric is used as a scorecard for past performance. An organization may use time to fill to assess the performance of its internal recruiting team, or as a way to set service level agreements with outsourced recruiting partners. By first developing a set of quantifiable job features and then applying survival analysis to historical time-to-fill data, we build a predictor to assess the probability a job will remain open beyond its target time-to-fill date, enabling us to commit additional resources to high risk jobs at the beginning of the recruiting process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信