基于混合双向长短期记忆模型的卡纳达语文本语法标注

A. Ananth, Sachin S. Bhat, P. S. Venugopala
{"title":"基于混合双向长短期记忆模型的卡纳达语文本语法标注","authors":"A. Ananth, Sachin S. Bhat, P. S. Venugopala","doi":"10.1109/DISCOVER52564.2021.9663430","DOIUrl":null,"url":null,"abstract":"Kannada is one of the most spoken languages in India. Despite the large usage base, like other major Indian languages, there exist minimal linguistic resources for computing and processing. Rich morphology and agglutinative nature of this language pose a great challenge to even the most basic of natural language processing applications like lemmantization, parts of speech tagging, summarization etc. In this paper, we have discussed a deep learning based perspective} for the grammatical tagging by utilizing hybrid models of bidirectional long short term memory(BDLSTM) and linear chain conditional random fields(CCRF). A database of Kannada documents with 15500 manually tagged words is used for this task. Proposed hybrid model shows a promising result of 81.02%.","PeriodicalId":413789,"journal":{"name":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Grammatical Tagging for the Kannada Text Documents using Hybrid Bidirectional Long-Short Term Memory Model\",\"authors\":\"A. Ananth, Sachin S. Bhat, P. S. Venugopala\",\"doi\":\"10.1109/DISCOVER52564.2021.9663430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kannada is one of the most spoken languages in India. Despite the large usage base, like other major Indian languages, there exist minimal linguistic resources for computing and processing. Rich morphology and agglutinative nature of this language pose a great challenge to even the most basic of natural language processing applications like lemmantization, parts of speech tagging, summarization etc. In this paper, we have discussed a deep learning based perspective} for the grammatical tagging by utilizing hybrid models of bidirectional long short term memory(BDLSTM) and linear chain conditional random fields(CCRF). A database of Kannada documents with 15500 manually tagged words is used for this task. Proposed hybrid model shows a promising result of 81.02%.\",\"PeriodicalId\":413789,\"journal\":{\"name\":\"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DISCOVER52564.2021.9663430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER52564.2021.9663430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

卡纳达语是印度最常用的语言之一。尽管像其他主要的印度语言一样,它的使用基础很大,但用于计算和处理的语言资源却很少。这种语言丰富的词法和粘连性对最基本的自然语言处理应用,如词形化、词性标注、摘要等,都提出了巨大的挑战。本文利用双向长短期记忆(BDLSTM)和线性链条件随机场(CCRF)混合模型,讨论了一种基于深度学习的语法标注方法。该任务使用了一个包含15500个手动标记单词的卡纳达语文档数据库。所提出的混合模型得到了81.02%的理想结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grammatical Tagging for the Kannada Text Documents using Hybrid Bidirectional Long-Short Term Memory Model
Kannada is one of the most spoken languages in India. Despite the large usage base, like other major Indian languages, there exist minimal linguistic resources for computing and processing. Rich morphology and agglutinative nature of this language pose a great challenge to even the most basic of natural language processing applications like lemmantization, parts of speech tagging, summarization etc. In this paper, we have discussed a deep learning based perspective} for the grammatical tagging by utilizing hybrid models of bidirectional long short term memory(BDLSTM) and linear chain conditional random fields(CCRF). A database of Kannada documents with 15500 manually tagged words is used for this task. Proposed hybrid model shows a promising result of 81.02%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信