基于模型预测控制的连续Petri网最优控制

A. Giua, C. Mahulea, L. Recalde, C. Seatzu, M. Silva
{"title":"基于模型预测控制的连续Petri网最优控制","authors":"A. Giua, C. Mahulea, L. Recalde, C. Seatzu, M. Silva","doi":"10.1109/WODES.2006.1678436","DOIUrl":null,"url":null,"abstract":"This paper addresses the optimal control problem of continuous Petri nets under infinite servers semantics. Our goal is to find a control input optimizing a certain cost function that permits the evolution from an initial marking to a desired configuration. The problem is studied through model predictive control (MPC), a control method, extensively used in industrial applications. Implicit and explicit procedures are presented together with a comparison between the two schemes","PeriodicalId":285315,"journal":{"name":"2006 8th International Workshop on Discrete Event Systems","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Optimal control of continuous Petri nets via model predictive control\",\"authors\":\"A. Giua, C. Mahulea, L. Recalde, C. Seatzu, M. Silva\",\"doi\":\"10.1109/WODES.2006.1678436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the optimal control problem of continuous Petri nets under infinite servers semantics. Our goal is to find a control input optimizing a certain cost function that permits the evolution from an initial marking to a desired configuration. The problem is studied through model predictive control (MPC), a control method, extensively used in industrial applications. Implicit and explicit procedures are presented together with a comparison between the two schemes\",\"PeriodicalId\":285315,\"journal\":{\"name\":\"2006 8th International Workshop on Discrete Event Systems\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th International Workshop on Discrete Event Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2006.1678436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th International Workshop on Discrete Event Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2006.1678436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

研究了无限服务器语义下连续Petri网的最优控制问题。我们的目标是找到一个控制输入,优化一个特定的成本函数,允许从初始标记到期望配置的演变。通过模型预测控制(MPC)这一在工业中广泛应用的控制方法来研究这一问题。给出了隐式和显式程序,并对两种方案进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of continuous Petri nets via model predictive control
This paper addresses the optimal control problem of continuous Petri nets under infinite servers semantics. Our goal is to find a control input optimizing a certain cost function that permits the evolution from an initial marking to a desired configuration. The problem is studied through model predictive control (MPC), a control method, extensively used in industrial applications. Implicit and explicit procedures are presented together with a comparison between the two schemes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信