{"title":"大规模浮动车数据卸载的性能边界","authors":"S. Ancona, Razvan Stanica, M. Fiore","doi":"10.1109/WONS.2014.6814727","DOIUrl":null,"url":null,"abstract":"Floating Car Data (FCD) consist of information generated by moving vehicles and uploaded to Internet-based control centers for processing and analysis. As upcoming mobile services based on or built for networked vehicles largely rely on uplink transfers of small-sized but high-frequency messages, FCD traffic is expected to become increasingly common in the next few years. Presently, FCD are managed through a traditional cellular network paradigm: however, the scalability of such a model is unclear in the face of massive FCD upload, involving large fractions of the vehicles over short time intervals. In this paper, we explore the use of vehicle-to-vehicle (V2V) communication to partially relieve the cellular infrastructure from FCD traffic. Specifically, we study the performance boundaries of such a FCD offloading approach in presence of best- and worst-case data aggregation possibilities at vehicles. We show the gain that can be obtained by offloading FCD via vehicular communication, and propose a simple distributed heuristic that has nearly optimal performance under any FCD aggregation model.","PeriodicalId":386988,"journal":{"name":"2014 11th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Performance boundaries of massive Floating Car Data offloading\",\"authors\":\"S. Ancona, Razvan Stanica, M. Fiore\",\"doi\":\"10.1109/WONS.2014.6814727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating Car Data (FCD) consist of information generated by moving vehicles and uploaded to Internet-based control centers for processing and analysis. As upcoming mobile services based on or built for networked vehicles largely rely on uplink transfers of small-sized but high-frequency messages, FCD traffic is expected to become increasingly common in the next few years. Presently, FCD are managed through a traditional cellular network paradigm: however, the scalability of such a model is unclear in the face of massive FCD upload, involving large fractions of the vehicles over short time intervals. In this paper, we explore the use of vehicle-to-vehicle (V2V) communication to partially relieve the cellular infrastructure from FCD traffic. Specifically, we study the performance boundaries of such a FCD offloading approach in presence of best- and worst-case data aggregation possibilities at vehicles. We show the gain that can be obtained by offloading FCD via vehicular communication, and propose a simple distributed heuristic that has nearly optimal performance under any FCD aggregation model.\",\"PeriodicalId\":386988,\"journal\":{\"name\":\"2014 11th Annual Conference on Wireless On-demand Network Systems and Services (WONS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Annual Conference on Wireless On-demand Network Systems and Services (WONS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WONS.2014.6814727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WONS.2014.6814727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance boundaries of massive Floating Car Data offloading
Floating Car Data (FCD) consist of information generated by moving vehicles and uploaded to Internet-based control centers for processing and analysis. As upcoming mobile services based on or built for networked vehicles largely rely on uplink transfers of small-sized but high-frequency messages, FCD traffic is expected to become increasingly common in the next few years. Presently, FCD are managed through a traditional cellular network paradigm: however, the scalability of such a model is unclear in the face of massive FCD upload, involving large fractions of the vehicles over short time intervals. In this paper, we explore the use of vehicle-to-vehicle (V2V) communication to partially relieve the cellular infrastructure from FCD traffic. Specifically, we study the performance boundaries of such a FCD offloading approach in presence of best- and worst-case data aggregation possibilities at vehicles. We show the gain that can be obtained by offloading FCD via vehicular communication, and propose a simple distributed heuristic that has nearly optimal performance under any FCD aggregation model.