Jesus Fernandez-Bes, L. A. Azpicueta-Ruiz, Magno T. M. Silva, J. Arenas-García
{"title":"一种具有最小二乘自适应组合器的扩散网络新方案","authors":"Jesus Fernandez-Bes, L. A. Azpicueta-Ruiz, Magno T. M. Silva, J. Arenas-García","doi":"10.1109/MLSP.2012.6349767","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel diffusion scheme for adaptive networks, where each node preserves a pure local estimate of the unknown parameter vector and combines this estimate with other estimates received from neighboring nodes. The combination weights are adapted to minimize a local least-squares cost function. Simulations carried out in stationary and nonstationary scenarios show that the proposed scheme can outperform other existing schemes for diffusion networks with adaptive combiners in terms of tracking capability and convergence rate when the network nodes use different step sizes.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A novel scheme for diffusion networks with least-squares adaptive combiners\",\"authors\":\"Jesus Fernandez-Bes, L. A. Azpicueta-Ruiz, Magno T. M. Silva, J. Arenas-García\",\"doi\":\"10.1109/MLSP.2012.6349767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel diffusion scheme for adaptive networks, where each node preserves a pure local estimate of the unknown parameter vector and combines this estimate with other estimates received from neighboring nodes. The combination weights are adapted to minimize a local least-squares cost function. Simulations carried out in stationary and nonstationary scenarios show that the proposed scheme can outperform other existing schemes for diffusion networks with adaptive combiners in terms of tracking capability and convergence rate when the network nodes use different step sizes.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel scheme for diffusion networks with least-squares adaptive combiners
In this paper, we propose a novel diffusion scheme for adaptive networks, where each node preserves a pure local estimate of the unknown parameter vector and combines this estimate with other estimates received from neighboring nodes. The combination weights are adapted to minimize a local least-squares cost function. Simulations carried out in stationary and nonstationary scenarios show that the proposed scheme can outperform other existing schemes for diffusion networks with adaptive combiners in terms of tracking capability and convergence rate when the network nodes use different step sizes.