一种具有最小二乘自适应组合器的扩散网络新方案

Jesus Fernandez-Bes, L. A. Azpicueta-Ruiz, Magno T. M. Silva, J. Arenas-García
{"title":"一种具有最小二乘自适应组合器的扩散网络新方案","authors":"Jesus Fernandez-Bes, L. A. Azpicueta-Ruiz, Magno T. M. Silva, J. Arenas-García","doi":"10.1109/MLSP.2012.6349767","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel diffusion scheme for adaptive networks, where each node preserves a pure local estimate of the unknown parameter vector and combines this estimate with other estimates received from neighboring nodes. The combination weights are adapted to minimize a local least-squares cost function. Simulations carried out in stationary and nonstationary scenarios show that the proposed scheme can outperform other existing schemes for diffusion networks with adaptive combiners in terms of tracking capability and convergence rate when the network nodes use different step sizes.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A novel scheme for diffusion networks with least-squares adaptive combiners\",\"authors\":\"Jesus Fernandez-Bes, L. A. Azpicueta-Ruiz, Magno T. M. Silva, J. Arenas-García\",\"doi\":\"10.1109/MLSP.2012.6349767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel diffusion scheme for adaptive networks, where each node preserves a pure local estimate of the unknown parameter vector and combines this estimate with other estimates received from neighboring nodes. The combination weights are adapted to minimize a local least-squares cost function. Simulations carried out in stationary and nonstationary scenarios show that the proposed scheme can outperform other existing schemes for diffusion networks with adaptive combiners in terms of tracking capability and convergence rate when the network nodes use different step sizes.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在本文中,我们提出了一种新的自适应网络扩散方案,其中每个节点保留未知参数向量的纯局部估计,并将该估计与从邻近节点接收的其他估计相结合。组合权值适应于最小化局部最小二乘代价函数。在平稳和非平稳场景下进行的仿真表明,当网络节点使用不同步长时,所提出的方法在跟踪能力和收敛速度方面都优于其他具有自适应组合器的扩散网络方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel scheme for diffusion networks with least-squares adaptive combiners
In this paper, we propose a novel diffusion scheme for adaptive networks, where each node preserves a pure local estimate of the unknown parameter vector and combines this estimate with other estimates received from neighboring nodes. The combination weights are adapted to minimize a local least-squares cost function. Simulations carried out in stationary and nonstationary scenarios show that the proposed scheme can outperform other existing schemes for diffusion networks with adaptive combiners in terms of tracking capability and convergence rate when the network nodes use different step sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信