虚拟高密度微电极阵列自适应神经调节的神经接口系统

Gerard O’Leary, Adam Gierlach, R. Genov, T. Valiante
{"title":"虚拟高密度微电极阵列自适应神经调节的神经接口系统","authors":"Gerard O’Leary, Adam Gierlach, R. Genov, T. Valiante","doi":"10.1109/BIOCAS.2019.8918739","DOIUrl":null,"url":null,"abstract":"The ultimate tool in neuroscience would offer the ability to record from every cell and adaptively stimulate each neuron based on inferred states. Microelectrode arrays (MEAs) have been developed to observe and probe neural populations with subcellular resolution, however, processing the large volumes of generated data streams is a critical bottleneck. Presented here is a microelectrode neural interface system (µNIT) which relaxes the physical electrode density requirement by combining lowdensity MEA technology with the generation of virtual electrodes. This increases the effective electrode density while minimizing the required processing overhead. µNIT integrates hardware accelerators for the real-time analysis of neuron-level activity, and for the adaptive generation of responsive electrical stimuli. Spike clustering is performed using an exponentially decaying memory-based autoencoder (EDM-AE) at a rate of up to 2676 spikes/second across all channels. Inferred states are used to adaptively control programmable waveform generators which create per-electrode stimuli at a 22.3 KHz sample rate. The processing system is demonstrated in vitro with clinically resected human brain tissue using a 60-channel microelectrode array.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Interface System for Virtual High-Density Microelectrode Array Adaptive Neuromodulation\",\"authors\":\"Gerard O’Leary, Adam Gierlach, R. Genov, T. Valiante\",\"doi\":\"10.1109/BIOCAS.2019.8918739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultimate tool in neuroscience would offer the ability to record from every cell and adaptively stimulate each neuron based on inferred states. Microelectrode arrays (MEAs) have been developed to observe and probe neural populations with subcellular resolution, however, processing the large volumes of generated data streams is a critical bottleneck. Presented here is a microelectrode neural interface system (µNIT) which relaxes the physical electrode density requirement by combining lowdensity MEA technology with the generation of virtual electrodes. This increases the effective electrode density while minimizing the required processing overhead. µNIT integrates hardware accelerators for the real-time analysis of neuron-level activity, and for the adaptive generation of responsive electrical stimuli. Spike clustering is performed using an exponentially decaying memory-based autoencoder (EDM-AE) at a rate of up to 2676 spikes/second across all channels. Inferred states are used to adaptively control programmable waveform generators which create per-electrode stimuli at a 22.3 KHz sample rate. The processing system is demonstrated in vitro with clinically resected human brain tissue using a 60-channel microelectrode array.\",\"PeriodicalId\":222264,\"journal\":{\"name\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2019.8918739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经科学的终极工具将提供记录每个细胞的能力,并根据推断的状态自适应地刺激每个神经元。微电极阵列(MEAs)已经发展到以亚细胞分辨率观察和探测神经群体,然而,处理大量生成的数据流是一个关键的瓶颈。本文提出了一种微电极神经接口系统(µNIT),该系统通过将低密度MEA技术与虚拟电极的生成相结合,放宽了对物理电极密度的要求。这增加了有效的电极密度,同时最小化所需的处理开销。µNIT集成了硬件加速器,用于实时分析神经元水平的活动,并用于自适应产生响应性电刺激。尖峰聚类是使用指数衰减的基于内存的自动编码器(EDM-AE)在所有通道上以高达2676尖峰/秒的速率执行的。推断状态用于自适应控制可编程波形发生器,该发生器在22.3 KHz采样率下产生每电极刺激。该处理系统在体外使用60通道微电极阵列与临床切除的人类脑组织进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Interface System for Virtual High-Density Microelectrode Array Adaptive Neuromodulation
The ultimate tool in neuroscience would offer the ability to record from every cell and adaptively stimulate each neuron based on inferred states. Microelectrode arrays (MEAs) have been developed to observe and probe neural populations with subcellular resolution, however, processing the large volumes of generated data streams is a critical bottleneck. Presented here is a microelectrode neural interface system (µNIT) which relaxes the physical electrode density requirement by combining lowdensity MEA technology with the generation of virtual electrodes. This increases the effective electrode density while minimizing the required processing overhead. µNIT integrates hardware accelerators for the real-time analysis of neuron-level activity, and for the adaptive generation of responsive electrical stimuli. Spike clustering is performed using an exponentially decaying memory-based autoencoder (EDM-AE) at a rate of up to 2676 spikes/second across all channels. Inferred states are used to adaptively control programmable waveform generators which create per-electrode stimuli at a 22.3 KHz sample rate. The processing system is demonstrated in vitro with clinically resected human brain tissue using a 60-channel microelectrode array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信