{"title":"VADD:车辆自组织网络中的车辆辅助数据传输","authors":"J. Zhao, G. Cao","doi":"10.1109/TVT.2007.901869","DOIUrl":null,"url":null,"abstract":"Multihop data delivery through vehicular ad hoc networks is complicated by the fact that vehicular networks are highly mobile and frequently disconnected. To address this issue, we adopt the idea of carry and forward, where a moving vehicle carries a packet until a new vehicle moves into its vicinity and forwards the packet. Being different from existing carry and forward solutions, we make use of predictable vehicle mobility, which is limited by traffic pattern and road layout. Based on the existing traffic pattern, a vehicle can find the next road to forward the packet to reduce the delay. We propose several vehicle-assisted data delivery (VADD) protocols to forward the packet to the best road with the lowest data-delivery delay. Experimental results show that the proposed VADD protocols outperform existing solutions in terms of packet-delivery ratio, data packet delay, and protocol overhead. Among the proposed VADD protocols, the hybrid probe (H-VADD) protocol has a much better performance.","PeriodicalId":163725,"journal":{"name":"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1340","resultStr":"{\"title\":\"VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks\",\"authors\":\"J. Zhao, G. Cao\",\"doi\":\"10.1109/TVT.2007.901869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multihop data delivery through vehicular ad hoc networks is complicated by the fact that vehicular networks are highly mobile and frequently disconnected. To address this issue, we adopt the idea of carry and forward, where a moving vehicle carries a packet until a new vehicle moves into its vicinity and forwards the packet. Being different from existing carry and forward solutions, we make use of predictable vehicle mobility, which is limited by traffic pattern and road layout. Based on the existing traffic pattern, a vehicle can find the next road to forward the packet to reduce the delay. We propose several vehicle-assisted data delivery (VADD) protocols to forward the packet to the best road with the lowest data-delivery delay. Experimental results show that the proposed VADD protocols outperform existing solutions in terms of packet-delivery ratio, data packet delay, and protocol overhead. Among the proposed VADD protocols, the hybrid probe (H-VADD) protocol has a much better performance.\",\"PeriodicalId\":163725,\"journal\":{\"name\":\"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1340\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVT.2007.901869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVT.2007.901869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks
Multihop data delivery through vehicular ad hoc networks is complicated by the fact that vehicular networks are highly mobile and frequently disconnected. To address this issue, we adopt the idea of carry and forward, where a moving vehicle carries a packet until a new vehicle moves into its vicinity and forwards the packet. Being different from existing carry and forward solutions, we make use of predictable vehicle mobility, which is limited by traffic pattern and road layout. Based on the existing traffic pattern, a vehicle can find the next road to forward the packet to reduce the delay. We propose several vehicle-assisted data delivery (VADD) protocols to forward the packet to the best road with the lowest data-delivery delay. Experimental results show that the proposed VADD protocols outperform existing solutions in terms of packet-delivery ratio, data packet delay, and protocol overhead. Among the proposed VADD protocols, the hybrid probe (H-VADD) protocol has a much better performance.