短信垃圾邮件的协同检测:利用混合投票技术的力量

Lalitha. B, Siddardha. S, Ibrahim. M, Rao G Ramakoteswara, P. Srinivas
{"title":"短信垃圾邮件的协同检测:利用混合投票技术的力量","authors":"Lalitha. B, Siddardha. S, Ibrahim. M, Rao G Ramakoteswara, P. Srinivas","doi":"10.1109/ICECAA58104.2023.10212100","DOIUrl":null,"url":null,"abstract":"Due to the variety of spamming techniques used, detecting SMS spam is a difficult task. This research study suggests a novel approach to improving SMS spam detection accuracy by leveraging the power of hybrid voting techniques. This research aims to combine the outputs of various machine learning models. Experiment results on a publicly available dataset show that the proposed hybrid voting technique outperforms individual models, detecting SMS spam with a high accuracy of over 98%. This approach has a lot of potential for improving SMS spam detection and can be applied to other types of spam detection tasks in different domains.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Detection of SMS Spam: Harnessing the Power of Hybrid Voting Technique\",\"authors\":\"Lalitha. B, Siddardha. S, Ibrahim. M, Rao G Ramakoteswara, P. Srinivas\",\"doi\":\"10.1109/ICECAA58104.2023.10212100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the variety of spamming techniques used, detecting SMS spam is a difficult task. This research study suggests a novel approach to improving SMS spam detection accuracy by leveraging the power of hybrid voting techniques. This research aims to combine the outputs of various machine learning models. Experiment results on a publicly available dataset show that the proposed hybrid voting technique outperforms individual models, detecting SMS spam with a high accuracy of over 98%. This approach has a lot of potential for improving SMS spam detection and can be applied to other types of spam detection tasks in different domains.\",\"PeriodicalId\":114624,\"journal\":{\"name\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECAA58104.2023.10212100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于使用的垃圾邮件技术多种多样,检测SMS垃圾邮件是一项艰巨的任务。本研究提出了一种利用混合投票技术提高SMS垃圾邮件检测准确性的新方法。本研究旨在结合各种机器学习模型的输出。在公开数据集上的实验结果表明,所提出的混合投票技术优于单个模型,检测短信垃圾邮件的准确率超过98%。这种方法在改进SMS垃圾邮件检测方面具有很大的潜力,并且可以应用于不同领域的其他类型的垃圾邮件检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Detection of SMS Spam: Harnessing the Power of Hybrid Voting Technique
Due to the variety of spamming techniques used, detecting SMS spam is a difficult task. This research study suggests a novel approach to improving SMS spam detection accuracy by leveraging the power of hybrid voting techniques. This research aims to combine the outputs of various machine learning models. Experiment results on a publicly available dataset show that the proposed hybrid voting technique outperforms individual models, detecting SMS spam with a high accuracy of over 98%. This approach has a lot of potential for improving SMS spam detection and can be applied to other types of spam detection tasks in different domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信