基于胸部x射线和CNN超参数优化器的COVID - 19预测

Satwik Ghosh, Koustav Ghosh, Ayan Mondal, Mainak Ghosh, Tapan Chowdhury
{"title":"基于胸部x射线和CNN超参数优化器的COVID - 19预测","authors":"Satwik Ghosh, Koustav Ghosh, Ayan Mondal, Mainak Ghosh, Tapan Chowdhury","doi":"10.1109/ICAC3N56670.2022.10074127","DOIUrl":null,"url":null,"abstract":"According to mid-June 2020, the abrupt escalation of coronavirus reported widespread fear and crossed 16 million confirmed cases. To fight against this growth, clinical imaging is recommended, and for illustration, X-Ray images can be applied for opinion. This paper categorizes chest X-ray images into three classes- COVID-19 positive, normal, and pneumonia affected. We have used a CNN model for analysis, and hyperparameters are used to train and optimize the CNN layers. Swarm-based artificial intelligent algorithm - Grey Wolf Optimizer algorithm has been used for further analysis. We have tested our proposed methodology, and comparative analysis has been done with two openly accessible dataset containing COVID- 19 affected, pneumonia affected, and normal images. The optimized CNN model features delicacy, insight, values of F1 scores of 97.77, 97.74, 96.24 to 92.86, uniqueness, and perfection, which are better than models at the leading edge of technology.","PeriodicalId":342573,"journal":{"name":"2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID 19 Prediction Using Chest X-Ray And CNN Hyperparameter Optimizer\",\"authors\":\"Satwik Ghosh, Koustav Ghosh, Ayan Mondal, Mainak Ghosh, Tapan Chowdhury\",\"doi\":\"10.1109/ICAC3N56670.2022.10074127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to mid-June 2020, the abrupt escalation of coronavirus reported widespread fear and crossed 16 million confirmed cases. To fight against this growth, clinical imaging is recommended, and for illustration, X-Ray images can be applied for opinion. This paper categorizes chest X-ray images into three classes- COVID-19 positive, normal, and pneumonia affected. We have used a CNN model for analysis, and hyperparameters are used to train and optimize the CNN layers. Swarm-based artificial intelligent algorithm - Grey Wolf Optimizer algorithm has been used for further analysis. We have tested our proposed methodology, and comparative analysis has been done with two openly accessible dataset containing COVID- 19 affected, pneumonia affected, and normal images. The optimized CNN model features delicacy, insight, values of F1 scores of 97.77, 97.74, 96.24 to 92.86, uniqueness, and perfection, which are better than models at the leading edge of technology.\",\"PeriodicalId\":342573,\"journal\":{\"name\":\"2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC3N56670.2022.10074127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC3N56670.2022.10074127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据2020年6月中旬,冠状病毒的突然升级引起了广泛的恐惧,确诊病例超过1600万例。为了对抗这种生长,建议进行临床影像学检查,为了说明,可以应用x射线图像来发表意见。本文将胸部x线图像分为COVID-19阳性、正常和肺炎感染三类。我们使用CNN模型进行分析,并使用超参数对CNN层进行训练和优化。本文采用基于群的人工智能算法——灰狼优化算法进行进一步分析。我们已经测试了我们提出的方法,并对包含受COVID- 19影响、受肺炎影响和正常图像的两个公开访问的数据集进行了比较分析。优化后的CNN模型具有精致性、洞察力,F1得分值分别为97.77、97.74、96.24 ~ 92.86,唯一性和完美性,优于技术前沿的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID 19 Prediction Using Chest X-Ray And CNN Hyperparameter Optimizer
According to mid-June 2020, the abrupt escalation of coronavirus reported widespread fear and crossed 16 million confirmed cases. To fight against this growth, clinical imaging is recommended, and for illustration, X-Ray images can be applied for opinion. This paper categorizes chest X-ray images into three classes- COVID-19 positive, normal, and pneumonia affected. We have used a CNN model for analysis, and hyperparameters are used to train and optimize the CNN layers. Swarm-based artificial intelligent algorithm - Grey Wolf Optimizer algorithm has been used for further analysis. We have tested our proposed methodology, and comparative analysis has been done with two openly accessible dataset containing COVID- 19 affected, pneumonia affected, and normal images. The optimized CNN model features delicacy, insight, values of F1 scores of 97.77, 97.74, 96.24 to 92.86, uniqueness, and perfection, which are better than models at the leading edge of technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信