{"title":"基于理想格和环lwe的隐私保护生物特征认证的安全问题","authors":"Aysajan Abidin, Aikaterini Mitrokotsa","doi":"10.1109/WIFS.2014.7084304","DOIUrl":null,"url":null,"abstract":"In this paper, we study the security of two recently proposed privacy-preserving biometric authentication protocols that employ packed somewhat homomorphic encryption schemes based on ideal lattices and ring-LWE, respectively. These two schemes have the same structure and have distributed architecture consisting of three entities: a client server, a computation server, and an authentication server. We present a simple attack algorithm that enables a malicious computation server to learn the biometric templates in at most 2N-τ queries, where N is the bit-length of a biometric template and τ the authentication threshold. The main enabler of the attack is that a malicious computation server can send an encryption of the inner product of the target biometric template with a bitstring of his own choice, instead of the securely computed Hamming distance between the fresh and stored biometric templates. We also discuss possible countermeasures to mitigate the attack using private information retrieval and signatures of correct computation.","PeriodicalId":220523,"journal":{"name":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Security aspects of privacy-preserving biometric authentication based on ideal lattices and ring-LWE\",\"authors\":\"Aysajan Abidin, Aikaterini Mitrokotsa\",\"doi\":\"10.1109/WIFS.2014.7084304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the security of two recently proposed privacy-preserving biometric authentication protocols that employ packed somewhat homomorphic encryption schemes based on ideal lattices and ring-LWE, respectively. These two schemes have the same structure and have distributed architecture consisting of three entities: a client server, a computation server, and an authentication server. We present a simple attack algorithm that enables a malicious computation server to learn the biometric templates in at most 2N-τ queries, where N is the bit-length of a biometric template and τ the authentication threshold. The main enabler of the attack is that a malicious computation server can send an encryption of the inner product of the target biometric template with a bitstring of his own choice, instead of the securely computed Hamming distance between the fresh and stored biometric templates. We also discuss possible countermeasures to mitigate the attack using private information retrieval and signatures of correct computation.\",\"PeriodicalId\":220523,\"journal\":{\"name\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2014.7084304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2014.7084304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Security aspects of privacy-preserving biometric authentication based on ideal lattices and ring-LWE
In this paper, we study the security of two recently proposed privacy-preserving biometric authentication protocols that employ packed somewhat homomorphic encryption schemes based on ideal lattices and ring-LWE, respectively. These two schemes have the same structure and have distributed architecture consisting of three entities: a client server, a computation server, and an authentication server. We present a simple attack algorithm that enables a malicious computation server to learn the biometric templates in at most 2N-τ queries, where N is the bit-length of a biometric template and τ the authentication threshold. The main enabler of the attack is that a malicious computation server can send an encryption of the inner product of the target biometric template with a bitstring of his own choice, instead of the securely computed Hamming distance between the fresh and stored biometric templates. We also discuss possible countermeasures to mitigate the attack using private information retrieval and signatures of correct computation.