{"title":"使用遗传算法的3D-MRI数据自动分割","authors":"Reinhard Möller, R. Zeipelt","doi":"10.1109/MIAR.2001.930303","DOIUrl":null,"url":null,"abstract":"One of the most interesting recently developed brain activity imaging methods is functional MR imaging (fMRI). The advantages of fMRI, i.e. noninvasiveness, reproducibility and interactivity of examination, must be measured against the problems like data distortion and limited time for examination. A major problem is that most fMRI segmentation procedures are partly interactive. There is a high demand for precisely and automatically working segmentation algorithms in order to get meaningful results within an acceptable short time. This article discusses the use and implementation of a genetic algorithm (GA) as a kernel for an automatic 3D segmentation of gray matter and white matter of a human brain within the procedure of fMRI.","PeriodicalId":375408,"journal":{"name":"Proceedings International Workshop on Medical Imaging and Augmented Reality","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic segmentation of 3D-MRI data using a genetic algorithm\",\"authors\":\"Reinhard Möller, R. Zeipelt\",\"doi\":\"10.1109/MIAR.2001.930303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most interesting recently developed brain activity imaging methods is functional MR imaging (fMRI). The advantages of fMRI, i.e. noninvasiveness, reproducibility and interactivity of examination, must be measured against the problems like data distortion and limited time for examination. A major problem is that most fMRI segmentation procedures are partly interactive. There is a high demand for precisely and automatically working segmentation algorithms in order to get meaningful results within an acceptable short time. This article discusses the use and implementation of a genetic algorithm (GA) as a kernel for an automatic 3D segmentation of gray matter and white matter of a human brain within the procedure of fMRI.\",\"PeriodicalId\":375408,\"journal\":{\"name\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIAR.2001.930303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Workshop on Medical Imaging and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIAR.2001.930303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic segmentation of 3D-MRI data using a genetic algorithm
One of the most interesting recently developed brain activity imaging methods is functional MR imaging (fMRI). The advantages of fMRI, i.e. noninvasiveness, reproducibility and interactivity of examination, must be measured against the problems like data distortion and limited time for examination. A major problem is that most fMRI segmentation procedures are partly interactive. There is a high demand for precisely and automatically working segmentation algorithms in order to get meaningful results within an acceptable short time. This article discusses the use and implementation of a genetic algorithm (GA) as a kernel for an automatic 3D segmentation of gray matter and white matter of a human brain within the procedure of fMRI.