基于Mueller矩阵成像的乙型肝炎病毒检测AI分类

Van-Tung Nguyen, Quoc-Thinh Dinh, Q. Phan, T. Pham
{"title":"基于Mueller矩阵成像的乙型肝炎病毒检测AI分类","authors":"Van-Tung Nguyen, Quoc-Thinh Dinh, Q. Phan, T. Pham","doi":"10.1117/12.2671019","DOIUrl":null,"url":null,"abstract":"A novel method of artificial intelligence (AI) classification is proposed for hepatitis B virus (HBV) detection based on the Mueller matrix imaging system. The feasibility of the proposed technique is demonstrated by measuring the optical properties of non-infected and infected HBV blood samples. Furthermore, different AI classifier techniques namely Yolo5, Yolo5-Restnet101, Yolo5-EfficientnetB0, and Yolo5-MobilenetV2 have been employed to classify the HBV samples. The results show that the proposed method provides 99% accuracy for HBV classification. In general, the proposed technique provides reliable and simple devices for HBV diagnosis applications.","PeriodicalId":278089,"journal":{"name":"European Conference on Biomedical Optics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI classification for hepatitis B virus detection based on Mueller matrix imaging\",\"authors\":\"Van-Tung Nguyen, Quoc-Thinh Dinh, Q. Phan, T. Pham\",\"doi\":\"10.1117/12.2671019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method of artificial intelligence (AI) classification is proposed for hepatitis B virus (HBV) detection based on the Mueller matrix imaging system. The feasibility of the proposed technique is demonstrated by measuring the optical properties of non-infected and infected HBV blood samples. Furthermore, different AI classifier techniques namely Yolo5, Yolo5-Restnet101, Yolo5-EfficientnetB0, and Yolo5-MobilenetV2 have been employed to classify the HBV samples. The results show that the proposed method provides 99% accuracy for HBV classification. In general, the proposed technique provides reliable and simple devices for HBV diagnosis applications.\",\"PeriodicalId\":278089,\"journal\":{\"name\":\"European Conference on Biomedical Optics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Biomedical Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Biomedical Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于Mueller矩阵成像系统的乙型肝炎病毒(HBV)检测人工智能(AI)分类新方法。通过测量未感染和感染HBV血液样本的光学特性,证明了所提出技术的可行性。此外,采用不同的人工智能分类器技术,即Yolo5、Yolo5- restnet101、Yolo5- efficientnetb0和Yolo5- mobilenetv2对HBV样本进行分类。结果表明,该方法对HBV的分类准确率达到99%。总的来说,提出的技术为HBV诊断应用提供了可靠和简单的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI classification for hepatitis B virus detection based on Mueller matrix imaging
A novel method of artificial intelligence (AI) classification is proposed for hepatitis B virus (HBV) detection based on the Mueller matrix imaging system. The feasibility of the proposed technique is demonstrated by measuring the optical properties of non-infected and infected HBV blood samples. Furthermore, different AI classifier techniques namely Yolo5, Yolo5-Restnet101, Yolo5-EfficientnetB0, and Yolo5-MobilenetV2 have been employed to classify the HBV samples. The results show that the proposed method provides 99% accuracy for HBV classification. In general, the proposed technique provides reliable and simple devices for HBV diagnosis applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信