基于深度神经网络的住宅负荷预测

K. S. Sudheera, Swetha R, Tejaswini R, Vaishali Meena M, Anu G. Kumar
{"title":"基于深度神经网络的住宅负荷预测","authors":"K. S. Sudheera, Swetha R, Tejaswini R, Vaishali Meena M, Anu G. Kumar","doi":"10.1109/ICITIIT57246.2023.10068706","DOIUrl":null,"url":null,"abstract":"This paper presents residential load forecasting using multivariate multi-step Deep Neural Networks (DNN) such as LSTM, CNN, Stacked LSTM, and Hybrid CNN-LSTM. A preliminary Exploratory Data Analysis (EDA) is conducted, and the decision variables are identified. An elbowing method is used to determine the number of clusters. Data is categorized based on weekdays, weekends, vacations, and Covid-Lockdown. Dimensionality-reduction using principal component analysis (PCA) is conducted. Seasonality-based clustering is found to improve the DNN model prediction accuracy further. A comparative analysis employs error metrics such as RMSE, MSE, MAPE, and MAE. The multivariate LSTM model with feedback is found to be the best fit model with the better performance indices.","PeriodicalId":170485,"journal":{"name":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residential Load Forecasting based on Deep Neural Network\",\"authors\":\"K. S. Sudheera, Swetha R, Tejaswini R, Vaishali Meena M, Anu G. Kumar\",\"doi\":\"10.1109/ICITIIT57246.2023.10068706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents residential load forecasting using multivariate multi-step Deep Neural Networks (DNN) such as LSTM, CNN, Stacked LSTM, and Hybrid CNN-LSTM. A preliminary Exploratory Data Analysis (EDA) is conducted, and the decision variables are identified. An elbowing method is used to determine the number of clusters. Data is categorized based on weekdays, weekends, vacations, and Covid-Lockdown. Dimensionality-reduction using principal component analysis (PCA) is conducted. Seasonality-based clustering is found to improve the DNN model prediction accuracy further. A comparative analysis employs error metrics such as RMSE, MSE, MAPE, and MAE. The multivariate LSTM model with feedback is found to be the best fit model with the better performance indices.\",\"PeriodicalId\":170485,\"journal\":{\"name\":\"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT57246.2023.10068706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT57246.2023.10068706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于多元多步深度神经网络(DNN)的住宅负荷预测方法,包括LSTM、CNN、堆叠LSTM和混合CNN-LSTM。初步探索性数据分析(EDA)进行,并确定决策变量。用肘法确定簇的数量。数据根据工作日、周末、假期和新冠肺炎封锁进行分类。利用主成分分析(PCA)进行降维。发现基于季节性的聚类可以进一步提高DNN模型的预测精度。比较分析采用误差度量,如RMSE、MSE、MAPE和MAE。结果表明,带反馈的多元LSTM模型是最优拟合模型,具有较好的性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residential Load Forecasting based on Deep Neural Network
This paper presents residential load forecasting using multivariate multi-step Deep Neural Networks (DNN) such as LSTM, CNN, Stacked LSTM, and Hybrid CNN-LSTM. A preliminary Exploratory Data Analysis (EDA) is conducted, and the decision variables are identified. An elbowing method is used to determine the number of clusters. Data is categorized based on weekdays, weekends, vacations, and Covid-Lockdown. Dimensionality-reduction using principal component analysis (PCA) is conducted. Seasonality-based clustering is found to improve the DNN model prediction accuracy further. A comparative analysis employs error metrics such as RMSE, MSE, MAPE, and MAE. The multivariate LSTM model with feedback is found to be the best fit model with the better performance indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信