{"title":"物理信号注入下基于脑电图的系统和智能算法的安全性初探","authors":"Md Imran Hossen, Yazhou Tu, X. Hei","doi":"10.1145/3591197.3591304","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) based systems utilize machine learning (ML) and deep learning (DL) models in various applications such as seizure detection, emotion recognition, cognitive workload estimation, and brain-computer interface (BCI). However, the security and robustness of such intelligent systems under analog-domain threats have received limited attention. This paper presents the first demonstration of physical signal injection attacks on ML and DL models utilizing EEG data. We investigate how an adversary can degrade the performance of different models by non-invasively injecting signals into EEG recordings. We show that the attacks can mislead or manipulate the models and diminish the reliability of EEG-based systems. Overall, this research sheds light on the need for more trustworthy physiological-signal-based intelligent systems in the healthcare field and opens up avenues for future work.","PeriodicalId":128846,"journal":{"name":"Proceedings of the 2023 Secure and Trustworthy Deep Learning Systems Workshop","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A First Look at the Security of EEG-based Systems and Intelligent Algorithms under Physical Signal Injections\",\"authors\":\"Md Imran Hossen, Yazhou Tu, X. Hei\",\"doi\":\"10.1145/3591197.3591304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) based systems utilize machine learning (ML) and deep learning (DL) models in various applications such as seizure detection, emotion recognition, cognitive workload estimation, and brain-computer interface (BCI). However, the security and robustness of such intelligent systems under analog-domain threats have received limited attention. This paper presents the first demonstration of physical signal injection attacks on ML and DL models utilizing EEG data. We investigate how an adversary can degrade the performance of different models by non-invasively injecting signals into EEG recordings. We show that the attacks can mislead or manipulate the models and diminish the reliability of EEG-based systems. Overall, this research sheds light on the need for more trustworthy physiological-signal-based intelligent systems in the healthcare field and opens up avenues for future work.\",\"PeriodicalId\":128846,\"journal\":{\"name\":\"Proceedings of the 2023 Secure and Trustworthy Deep Learning Systems Workshop\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Secure and Trustworthy Deep Learning Systems Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3591197.3591304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Secure and Trustworthy Deep Learning Systems Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3591197.3591304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A First Look at the Security of EEG-based Systems and Intelligent Algorithms under Physical Signal Injections
Electroencephalography (EEG) based systems utilize machine learning (ML) and deep learning (DL) models in various applications such as seizure detection, emotion recognition, cognitive workload estimation, and brain-computer interface (BCI). However, the security and robustness of such intelligent systems under analog-domain threats have received limited attention. This paper presents the first demonstration of physical signal injection attacks on ML and DL models utilizing EEG data. We investigate how an adversary can degrade the performance of different models by non-invasively injecting signals into EEG recordings. We show that the attacks can mislead or manipulate the models and diminish the reliability of EEG-based systems. Overall, this research sheds light on the need for more trustworthy physiological-signal-based intelligent systems in the healthcare field and opens up avenues for future work.