有限域上二阶Drinfeld模的模多项式和等同性计算

Perlas Caranay, Matthew Greenberg, R. Scheidler
{"title":"有限域上二阶Drinfeld模的模多项式和等同性计算","authors":"Perlas Caranay, Matthew Greenberg, R. Scheidler","doi":"10.1090/conm/754/15148","DOIUrl":null,"url":null,"abstract":"Summary: We present algorithms for computing j -invariants, modular polynomials and explicit isogenies for ordinary rank 2 Drinfeld modules over finite fields and describe how Drinfeld modular polynomials can be used to compute isogeny graphs and endomorphism rings of ordinary rank 2 Drinfeld modules. Our technique for computing Drinfeld modular polynomials is based on the traditional analytic approach for obtaining classical modular polynomials. Our ideas for generating isogeny graphs and finding endomorphism rings for rank 2 Drinfeld modules closely follows the work of Kohel and Fouquet. All our algorithms were implemented in SAGE and numerical examples are included. For the entire collection see [Zbl 1461.11002].","PeriodicalId":369218,"journal":{"name":"75 Years of Mathematics of\n Computation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computing modular polynomials and isogenies of rank two Drinfeld modules over finite fields\",\"authors\":\"Perlas Caranay, Matthew Greenberg, R. Scheidler\",\"doi\":\"10.1090/conm/754/15148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary: We present algorithms for computing j -invariants, modular polynomials and explicit isogenies for ordinary rank 2 Drinfeld modules over finite fields and describe how Drinfeld modular polynomials can be used to compute isogeny graphs and endomorphism rings of ordinary rank 2 Drinfeld modules. Our technique for computing Drinfeld modular polynomials is based on the traditional analytic approach for obtaining classical modular polynomials. Our ideas for generating isogeny graphs and finding endomorphism rings for rank 2 Drinfeld modules closely follows the work of Kohel and Fouquet. All our algorithms were implemented in SAGE and numerical examples are included. For the entire collection see [Zbl 1461.11002].\",\"PeriodicalId\":369218,\"journal\":{\"name\":\"75 Years of Mathematics of\\n Computation\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"75 Years of Mathematics of\\n Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/754/15148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"75 Years of Mathematics of\n Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/754/15148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要:本文给出了有限域上普通2秩Drinfeld模的j -不变量、模多项式和显式同胚的计算算法,并描述了如何使用Drinfeld模多项式计算普通2秩Drinfeld模的同胚图和自同态环。我们的计算德林菲尔德模多项式的技术是基于传统的解析方法来获得经典模多项式。我们关于生成2阶Drinfeld模的等同构图和寻找自同态环的想法与Kohel和Fouquet的工作密切相关。所有算法都在SAGE中实现,并给出了数值算例。完整的集合见[Zbl 1461.11002]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing modular polynomials and isogenies of rank two Drinfeld modules over finite fields
Summary: We present algorithms for computing j -invariants, modular polynomials and explicit isogenies for ordinary rank 2 Drinfeld modules over finite fields and describe how Drinfeld modular polynomials can be used to compute isogeny graphs and endomorphism rings of ordinary rank 2 Drinfeld modules. Our technique for computing Drinfeld modular polynomials is based on the traditional analytic approach for obtaining classical modular polynomials. Our ideas for generating isogeny graphs and finding endomorphism rings for rank 2 Drinfeld modules closely follows the work of Kohel and Fouquet. All our algorithms were implemented in SAGE and numerical examples are included. For the entire collection see [Zbl 1461.11002].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信