M. Wicaksono, G.A. Pohan, I. T. Hidayath
{"title":"Analisa Aerodinamika Airfoil Pesawat Dengan Pendekatan Computational Fluid Dynamic Dan Wind Tunnel","authors":"M. Wicaksono, G.A. Pohan, I. T. Hidayath","doi":"10.36040/flywheel.v13i1.4744","DOIUrl":null,"url":null,"abstract":"Penelitian terhadap bentuk airfoil terus dilakukan untuk mendapatkan performasi aerodinamika yang terbaik. Dengan gaya angkat yang lebih besar maka pesawat terbang dapat mengangkut beban lebih besar dan dapat melakukan lepas landas pada runway yang pendek. Beberapa metode dapat digunakan untuk melakukan pengujian terhadap model pesawat, seperti metode eksperimental dan metode komputasi. Dalam hal ini, metode komputasi dianggap lebih efisien bila dibandingkan dengan metode eksperimental. Karena, tidak memerlukan ruang yang besar untuk mendapatkan hasil yang maksimal dan waktu pengujian relatif lebih singkat bila dibandingkan metode eksperimental. Penulis melakukan penelitian untuk mengetahui karakteristik aerodinamika dari airfoil NACA 2412, NACA 4412 dan NACA 6412 serta pengaruh kecepatan angin dan sudut serang terhadap performasi dari airfoil. Dari data yang didapat nilai drag coefficient dan lift coefficient berdasarkan sudut serang aliran udara. Dari data yang didapat nilai drag coefficient dan lift coefficient berdasarkan kecepatan aliran udara. Drag coefficient berdasarkan urutan nilai yang paling besar adalah kecepatan 4, 5, 7 dan 3 m/s. Sedangkan lift coefficient berdasarkan urutan nilai yang paling besar adalah kecepatan 7, 5, 4 dan 3 m/s. Dapat disimpulkan semakin besar nilai kecepatan aliran udara maka semakin kecil pula drag coefficient, tetapi tidak berlaku untuk kecepatan 3 m/s karena bentuk aliran udara dalam kondisi laminer. Sedangkan untuk lift coefficient, semakin besar kecepatan aliran udara, maka semakin besar pula lift coefficient. Drag coefficient berdasarkan urutan nilai yang paling besar adalah sudut 15o, 10o, 5o, 0o dan -5o. Sedangkan lift coefficient berdasarkan urutan nilai yang paling besar adalah sudut 15o, 10o, 5o, 0o dan -5o. Dapat disimpulkan semakin besar sudut serang aliraan udara, maka semakin besar pula nilai drag coefficient dan lift coefficient. Dari hasil perbandingan antar drag coefficient dan lift coefficient pada wind tunnel dengan Ansys Fluent didapat persentase terbesar pada NACA 2412 dengan besar nilai persentase tersebut adalah 28%. Berdasarkan katagori nilai MAPE (Mean Absolute Percentage Error) dapat ditafsirkan pengujian secara numerik dapat meberikan hasil yang layak. Karena nilai MAPE terbesar kurang dari 50% dan lebih dari 20%. Peneliti dapat meningkatkan keakurasian dengan membuat dudukan airfoil yang lebih kecil. Karena hal tersebut membengaruhi gaya angkat dan hambat.","PeriodicalId":170794,"journal":{"name":"JURNAL FLYWHEEL","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL FLYWHEEL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36040/flywheel.v13i1.4744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对气垫船形式的研究仍在继续,以获得最佳的空气动力学结构。在更大的升力下,飞机可以负重更大,可以在短跑道上起飞。一些方法可以用来测试飞机模型,如实验方法和计算方法。在这方面,计算方法被认为比实验方法更有效。因为,与实验方法相比,不需要很大的空间就能获得最大的结果和测试时间相对较短。作者正在进行研究,以了解NACA 2412、NACA 4412和NACA 6412的空气动力学特性,以及风速和角对airfoil变形的影响。摄入量数据表明,摄入量拖曳量和升降机摄入量是建立在进气道的角度上的。根据摄取的数据,提取提取价值和根据气流速度摄取升力。根据最大的等级顺序进行消化,是速度4、5、7和3米。而升降机采用最大等级为速度7、5、4和3米/s。可能会推断出气流的速度越大,抽取的coefs就越小,但由于空气流动的速度较慢,不适用于速度3米/s。至于摄取,空气流动的速度越快,摄取的速度就越大。摄入量最大的数值是角15o, 10o, 5o, 0o和-5o。而摄取分量最大的数值是角15o, 10o, 5o, 0o和-5o。可能会推断出空气中摄取的角越大,摄取的分量就越大。在NACA 2412的水隧道和风能隧道之间的比例比较中,我们得到的最多的比例是28%。根据MAPE值的分类,可以对测试进行数值解释,可以给出有效的结果。因为最大的MAPE分数低于50%和20%以上。研究人员可以通过制造更小的airfoil支架来提高准确性。因为它影响了提升和抑制的力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analisa Aerodinamika Airfoil Pesawat Dengan Pendekatan Computational Fluid Dynamic Dan Wind Tunnel
Penelitian terhadap bentuk airfoil terus dilakukan untuk mendapatkan performasi aerodinamika yang terbaik. Dengan gaya angkat yang lebih besar maka pesawat terbang dapat mengangkut beban lebih besar dan dapat melakukan lepas landas pada runway yang pendek. Beberapa metode dapat digunakan untuk melakukan pengujian terhadap model pesawat, seperti metode eksperimental dan metode komputasi. Dalam hal ini, metode komputasi dianggap lebih efisien bila dibandingkan dengan metode eksperimental. Karena, tidak memerlukan ruang yang besar untuk mendapatkan hasil yang maksimal dan waktu pengujian relatif lebih singkat bila dibandingkan metode eksperimental. Penulis melakukan penelitian untuk mengetahui karakteristik aerodinamika dari airfoil NACA 2412, NACA 4412 dan NACA 6412 serta pengaruh kecepatan angin dan sudut serang terhadap performasi dari airfoil. Dari data yang didapat nilai drag coefficient dan lift coefficient berdasarkan sudut serang aliran udara. Dari data yang didapat nilai drag coefficient dan lift coefficient berdasarkan kecepatan aliran udara. Drag coefficient berdasarkan urutan nilai yang paling besar adalah kecepatan 4, 5, 7 dan 3 m/s. Sedangkan lift coefficient berdasarkan urutan nilai yang paling besar adalah kecepatan 7, 5, 4 dan 3 m/s. Dapat disimpulkan semakin besar nilai kecepatan aliran udara maka semakin kecil pula drag coefficient, tetapi tidak berlaku untuk kecepatan 3 m/s karena bentuk aliran udara dalam kondisi laminer. Sedangkan untuk lift coefficient, semakin besar kecepatan aliran udara, maka semakin besar pula lift coefficient. Drag coefficient berdasarkan urutan nilai yang paling besar adalah sudut 15o, 10o, 5o, 0o dan -5o. Sedangkan lift coefficient berdasarkan urutan nilai yang paling besar adalah sudut 15o, 10o, 5o, 0o dan -5o. Dapat disimpulkan semakin besar sudut serang aliraan udara, maka semakin besar pula nilai drag coefficient dan lift coefficient. Dari hasil perbandingan antar drag coefficient dan lift coefficient pada wind tunnel dengan Ansys Fluent didapat persentase terbesar pada NACA 2412 dengan besar nilai persentase tersebut adalah 28%. Berdasarkan katagori nilai MAPE (Mean Absolute Percentage Error) dapat ditafsirkan pengujian secara numerik dapat meberikan hasil yang layak. Karena nilai MAPE terbesar kurang dari 50% dan lebih dari 20%. Peneliti dapat meningkatkan keakurasian dengan membuat dudukan airfoil yang lebih kecil. Karena hal tersebut membengaruhi gaya angkat dan hambat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信