Kubernetes边缘集群的多应用分层自动伸缩

Ioannis Dimolitsas, Dimitrios Spatharakis, Dimitrios Dechouniotis, Anastasios Zafeiropoulos, S. Papavassiliou
{"title":"Kubernetes边缘集群的多应用分层自动伸缩","authors":"Ioannis Dimolitsas, Dimitrios Spatharakis, Dimitrios Dechouniotis, Anastasios Zafeiropoulos, S. Papavassiliou","doi":"10.1109/SMARTCOMP58114.2023.00074","DOIUrl":null,"url":null,"abstract":"The dynamic workload demands of smart city applications hosted on edge infrastructures require the development of advanced scaling mechanisms. Recent studies proposed single-application autoscaling solutions based on various technical approaches. However, for edge infrastructures with limited resource availability, it is essential to simultaneously manage heterogeneous application requirements, aiming at optimal resource allocation and minimal operational costs. This study introduces a multi-application hierarchical autoscaling framework for Kubernetes Edge Clusters. An application-based mechanism nominates the best applications’ deployments based on workload prediction and several criteria that guarantee the application’s performance while minimizing the infrastructure provider’s cost. For the joint application orchestration, an aggregation mechanism composes the candidate scaling solutions for the cluster. Then, a cluster autoscaling mechanism, based on the Analytic Hierarchy Process, undertakes the cluster’s scaling decision to optimize the resource allocation and energy consumption of the cluster. The evaluation illustrates the benefits of the proposed scaling strategy, achieving significant improvement in the average allocated resources and energy consumption compared to single-application approaches.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Application Hierarchical Autoscaling for Kubernetes Edge Clusters\",\"authors\":\"Ioannis Dimolitsas, Dimitrios Spatharakis, Dimitrios Dechouniotis, Anastasios Zafeiropoulos, S. Papavassiliou\",\"doi\":\"10.1109/SMARTCOMP58114.2023.00074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic workload demands of smart city applications hosted on edge infrastructures require the development of advanced scaling mechanisms. Recent studies proposed single-application autoscaling solutions based on various technical approaches. However, for edge infrastructures with limited resource availability, it is essential to simultaneously manage heterogeneous application requirements, aiming at optimal resource allocation and minimal operational costs. This study introduces a multi-application hierarchical autoscaling framework for Kubernetes Edge Clusters. An application-based mechanism nominates the best applications’ deployments based on workload prediction and several criteria that guarantee the application’s performance while minimizing the infrastructure provider’s cost. For the joint application orchestration, an aggregation mechanism composes the candidate scaling solutions for the cluster. Then, a cluster autoscaling mechanism, based on the Analytic Hierarchy Process, undertakes the cluster’s scaling decision to optimize the resource allocation and energy consumption of the cluster. The evaluation illustrates the benefits of the proposed scaling strategy, achieving significant improvement in the average allocated resources and energy consumption compared to single-application approaches.\",\"PeriodicalId\":163556,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP58114.2023.00074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

托管在边缘基础设施上的智慧城市应用程序的动态工作负载需求需要开发先进的扩展机制。最近的研究提出了基于各种技术方法的单应用自动缩放解决方案。然而,对于资源可用性有限的边缘基础设施,必须同时管理异构应用程序需求,以优化资源分配和最小化运营成本为目标。本研究介绍了Kubernetes边缘集群的多应用分层自动伸缩框架。基于应用程序的机制根据工作负载预测和保证应用程序性能的几个标准来指定最佳的应用程序部署,同时最大限度地降低基础设施提供商的成本。对于联合应用程序编排,聚合机制组成了集群的候选伸缩解决方案。然后,基于层次分析法的集群自扩展机制承担集群的扩展决策,以优化集群的资源分配和能耗。评估说明了所提出的扩展策略的好处,与单一应用程序方法相比,在平均分配资源和能源消耗方面取得了显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Application Hierarchical Autoscaling for Kubernetes Edge Clusters
The dynamic workload demands of smart city applications hosted on edge infrastructures require the development of advanced scaling mechanisms. Recent studies proposed single-application autoscaling solutions based on various technical approaches. However, for edge infrastructures with limited resource availability, it is essential to simultaneously manage heterogeneous application requirements, aiming at optimal resource allocation and minimal operational costs. This study introduces a multi-application hierarchical autoscaling framework for Kubernetes Edge Clusters. An application-based mechanism nominates the best applications’ deployments based on workload prediction and several criteria that guarantee the application’s performance while minimizing the infrastructure provider’s cost. For the joint application orchestration, an aggregation mechanism composes the candidate scaling solutions for the cluster. Then, a cluster autoscaling mechanism, based on the Analytic Hierarchy Process, undertakes the cluster’s scaling decision to optimize the resource allocation and energy consumption of the cluster. The evaluation illustrates the benefits of the proposed scaling strategy, achieving significant improvement in the average allocated resources and energy consumption compared to single-application approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信