基于连续时间确定性策略梯度的变形飞行器无探索控制器*

Seong-hun Kim, Hanna Lee, Youdan Kim
{"title":"基于连续时间确定性策略梯度的变形飞行器无探索控制器*","authors":"Seong-hun Kim, Hanna Lee, Youdan Kim","doi":"10.1109/MED48518.2020.9183206","DOIUrl":null,"url":null,"abstract":"A controller is optimized using limited flight data of morphing aircraft without dynamic model. Due to the nonlinear and nonaffine in control nature of the morphing aircraft dynamics, the integral reinforcement learning scheme and the deterministic policy gradient-based learning method are incorporated to develop to train the parameterized control input. The stability of the learnt control input is analyzed when the corresponding action-value function is converged. Unlike online algorithms, the parameters in the control input is hard to converge, and therefore a constrained learning strategy is implemented. The performance of the proposed method is demonstrated through numerical simulation for a longitudinal morphing aircraft system.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous-Time Deterministic Policy Gradient-Based Controller for Morphing Aircraft without Exploration*\",\"authors\":\"Seong-hun Kim, Hanna Lee, Youdan Kim\",\"doi\":\"10.1109/MED48518.2020.9183206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A controller is optimized using limited flight data of morphing aircraft without dynamic model. Due to the nonlinear and nonaffine in control nature of the morphing aircraft dynamics, the integral reinforcement learning scheme and the deterministic policy gradient-based learning method are incorporated to develop to train the parameterized control input. The stability of the learnt control input is analyzed when the corresponding action-value function is converged. Unlike online algorithms, the parameters in the control input is hard to converge, and therefore a constrained learning strategy is implemented. The performance of the proposed method is demonstrated through numerical simulation for a longitudinal morphing aircraft system.\",\"PeriodicalId\":418518,\"journal\":{\"name\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED48518.2020.9183206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用有限的变形飞行器飞行数据,在没有动态模型的情况下对控制器进行优化。针对变形飞机动力学控制的非线性和非仿射特性,采用积分强化学习方法和基于确定性策略梯度的学习方法对参数化控制输入进行训练。当动作值函数收敛时,分析了学习到的控制输入的稳定性。与在线算法不同,控制输入中的参数难以收敛,因此实现了约束学习策略。通过纵向变形飞机系统的数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous-Time Deterministic Policy Gradient-Based Controller for Morphing Aircraft without Exploration*
A controller is optimized using limited flight data of morphing aircraft without dynamic model. Due to the nonlinear and nonaffine in control nature of the morphing aircraft dynamics, the integral reinforcement learning scheme and the deterministic policy gradient-based learning method are incorporated to develop to train the parameterized control input. The stability of the learnt control input is analyzed when the corresponding action-value function is converged. Unlike online algorithms, the parameters in the control input is hard to converge, and therefore a constrained learning strategy is implemented. The performance of the proposed method is demonstrated through numerical simulation for a longitudinal morphing aircraft system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信