视觉系统,学生考勤监控与非标准的情况检测

O. Kainz, D. Cymbalák, Jaroslav Lámer, F. Jakab
{"title":"视觉系统,学生考勤监控与非标准的情况检测","authors":"O. Kainz, D. Cymbalák, Jaroslav Lámer, F. Jakab","doi":"10.1109/ICETA.2014.7107589","DOIUrl":null,"url":null,"abstract":"In this paper we propose a visual system for monitoring of student attendance in seminars and lectures. Basic idea is to estimate the number of people in the room using face detection algorithms and subsequently utilize face recognition algorithms to determine the actual identification of persons (students). Presented approach may be used for multiple purposes. Principal and primary purpose is to monitor attendance, which is possible thanks to university database. When implemented, system is expected to evaluate the attendance automatically or if necessary using collaborative authentication. Non-standard or anomaly detection is another feature that is to be provided by system, subject to tracking are hands, eyes and movement. Proposed solution is expected to improve and facilitate attendance monitoring of students at seminars and lectures. Further it may be used for anomaly prevention (e.g. cheating) and in specific cases for security or legal matters.","PeriodicalId":340996,"journal":{"name":"2014 IEEE 12th IEEE International Conference on Emerging eLearning Technologies and Applications (ICETA)","volume":"2010 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Visual system for student attendance monitoring with non-standard situation detection\",\"authors\":\"O. Kainz, D. Cymbalák, Jaroslav Lámer, F. Jakab\",\"doi\":\"10.1109/ICETA.2014.7107589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a visual system for monitoring of student attendance in seminars and lectures. Basic idea is to estimate the number of people in the room using face detection algorithms and subsequently utilize face recognition algorithms to determine the actual identification of persons (students). Presented approach may be used for multiple purposes. Principal and primary purpose is to monitor attendance, which is possible thanks to university database. When implemented, system is expected to evaluate the attendance automatically or if necessary using collaborative authentication. Non-standard or anomaly detection is another feature that is to be provided by system, subject to tracking are hands, eyes and movement. Proposed solution is expected to improve and facilitate attendance monitoring of students at seminars and lectures. Further it may be used for anomaly prevention (e.g. cheating) and in specific cases for security or legal matters.\",\"PeriodicalId\":340996,\"journal\":{\"name\":\"2014 IEEE 12th IEEE International Conference on Emerging eLearning Technologies and Applications (ICETA)\",\"volume\":\"2010 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 12th IEEE International Conference on Emerging eLearning Technologies and Applications (ICETA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETA.2014.7107589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 12th IEEE International Conference on Emerging eLearning Technologies and Applications (ICETA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETA.2014.7107589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们提出了一个可视化系统,以监测学生出席研讨会和讲座。基本思想是使用人脸检测算法估计房间里的人数,然后利用人脸识别算法确定人(学生)的实际身份。所提出的方法可用于多种目的。主要和主要目的是监测出勤率,这是可能的感谢大学数据库。当实现时,系统将自动评估考勤,或者在必要时使用协作身份验证。非标准或异常检测是系统提供的另一个功能,受跟踪的是手,眼睛和运动。拟议的解决办法预计将改善和促进学生出席研讨会和讲座的监测。此外,它可以用于异常预防(例如作弊),并在特定情况下用于安全或法律事务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual system for student attendance monitoring with non-standard situation detection
In this paper we propose a visual system for monitoring of student attendance in seminars and lectures. Basic idea is to estimate the number of people in the room using face detection algorithms and subsequently utilize face recognition algorithms to determine the actual identification of persons (students). Presented approach may be used for multiple purposes. Principal and primary purpose is to monitor attendance, which is possible thanks to university database. When implemented, system is expected to evaluate the attendance automatically or if necessary using collaborative authentication. Non-standard or anomaly detection is another feature that is to be provided by system, subject to tracking are hands, eyes and movement. Proposed solution is expected to improve and facilitate attendance monitoring of students at seminars and lectures. Further it may be used for anomaly prevention (e.g. cheating) and in specific cases for security or legal matters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信