Nicolas Verstaevel, J. Georgé, C. Bernon, M. Gleizes
{"title":"异常检测的自组织学习模型:在老年人中的应用","authors":"Nicolas Verstaevel, J. Georgé, C. Bernon, M. Gleizes","doi":"10.1109/SASO.2018.00018","DOIUrl":null,"url":null,"abstract":"In a context of a rapidly growing population of elderly people, this paper introduces a novel method for behavioural anomaly detection relying on a self-organized learning process. This method first models the Circadian Activity Rhythm of a set of sensors and compares it to a nominal profile to determine variations in patients' activities. The anomalies are detected by a multi-agent system as a linear relation of those variations, weighted by influence parameters. The problem of adaptation to a particular patient then becomes the problem of learning the adequate influence parameters. Those influence parameters are self-adjusted, using feedback provided at any time by the medical staff. This approach is evaluated on a synthetic environment and results show both the capacity to effectively learn influence parameters and the resilience of this system to parameter size. Details on the ongoing real-world experimentation are provided.","PeriodicalId":405522,"journal":{"name":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Self-Organized Learning Model for Anomalies Detection: Application to Elderly People\",\"authors\":\"Nicolas Verstaevel, J. Georgé, C. Bernon, M. Gleizes\",\"doi\":\"10.1109/SASO.2018.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a context of a rapidly growing population of elderly people, this paper introduces a novel method for behavioural anomaly detection relying on a self-organized learning process. This method first models the Circadian Activity Rhythm of a set of sensors and compares it to a nominal profile to determine variations in patients' activities. The anomalies are detected by a multi-agent system as a linear relation of those variations, weighted by influence parameters. The problem of adaptation to a particular patient then becomes the problem of learning the adequate influence parameters. Those influence parameters are self-adjusted, using feedback provided at any time by the medical staff. This approach is evaluated on a synthetic environment and results show both the capacity to effectively learn influence parameters and the resilience of this system to parameter size. Details on the ongoing real-world experimentation are provided.\",\"PeriodicalId\":405522,\"journal\":{\"name\":\"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2018.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Self-Organized Learning Model for Anomalies Detection: Application to Elderly People
In a context of a rapidly growing population of elderly people, this paper introduces a novel method for behavioural anomaly detection relying on a self-organized learning process. This method first models the Circadian Activity Rhythm of a set of sensors and compares it to a nominal profile to determine variations in patients' activities. The anomalies are detected by a multi-agent system as a linear relation of those variations, weighted by influence parameters. The problem of adaptation to a particular patient then becomes the problem of learning the adequate influence parameters. Those influence parameters are self-adjusted, using feedback provided at any time by the medical staff. This approach is evaluated on a synthetic environment and results show both the capacity to effectively learn influence parameters and the resilience of this system to parameter size. Details on the ongoing real-world experimentation are provided.