Qingquan Zhang, Feng Wu, Yang Tao, Jiyuan Pei, Jialin Liu, X. Yao
{"title":"D-MAENS2:一种具有更好决策多样性的自适应D-MAENS算法","authors":"Qingquan Zhang, Feng Wu, Yang Tao, Jiyuan Pei, Jialin Liu, X. Yao","doi":"10.1109/SSCI47803.2020.9308250","DOIUrl":null,"url":null,"abstract":"The capacitated arc routing problem is a challenging combinatorial optimization problem with numerous real-world applications. In recent years, several multi-objective optimization algorithms have been applied to minimize both the total cost and makespan for capacitated arc routing problems, among which the decomposition-based memetic algorithm with extended neighborhood search has shown promising results. In this paper, we propose an improved decomposition-based memetic algorithm with extended neighborhood search, called D-MAENS2, which uses a novel method to construct a gene pool to measure and improve the diversity of solutions in decision variable space. Additionally, D-MAENS2 is capable of adapting online its hyper-parameters to various problem instances. Experimental studies show that our novel D-MAENS2 significantly outperforms D-MAENS on 81 benchmark instances and shows outstanding performance on instances of large size.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"D-MAENS2: A Self-adaptive D-MAENS Algorithm with Better Decision Diversity\",\"authors\":\"Qingquan Zhang, Feng Wu, Yang Tao, Jiyuan Pei, Jialin Liu, X. Yao\",\"doi\":\"10.1109/SSCI47803.2020.9308250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capacitated arc routing problem is a challenging combinatorial optimization problem with numerous real-world applications. In recent years, several multi-objective optimization algorithms have been applied to minimize both the total cost and makespan for capacitated arc routing problems, among which the decomposition-based memetic algorithm with extended neighborhood search has shown promising results. In this paper, we propose an improved decomposition-based memetic algorithm with extended neighborhood search, called D-MAENS2, which uses a novel method to construct a gene pool to measure and improve the diversity of solutions in decision variable space. Additionally, D-MAENS2 is capable of adapting online its hyper-parameters to various problem instances. Experimental studies show that our novel D-MAENS2 significantly outperforms D-MAENS on 81 benchmark instances and shows outstanding performance on instances of large size.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D-MAENS2: A Self-adaptive D-MAENS Algorithm with Better Decision Diversity
The capacitated arc routing problem is a challenging combinatorial optimization problem with numerous real-world applications. In recent years, several multi-objective optimization algorithms have been applied to minimize both the total cost and makespan for capacitated arc routing problems, among which the decomposition-based memetic algorithm with extended neighborhood search has shown promising results. In this paper, we propose an improved decomposition-based memetic algorithm with extended neighborhood search, called D-MAENS2, which uses a novel method to construct a gene pool to measure and improve the diversity of solutions in decision variable space. Additionally, D-MAENS2 is capable of adapting online its hyper-parameters to various problem instances. Experimental studies show that our novel D-MAENS2 significantly outperforms D-MAENS on 81 benchmark instances and shows outstanding performance on instances of large size.