非线性规划的一种信赖域内点法

M. Villalobos, Yin Zhang
{"title":"非线性规划的一种信赖域内点法","authors":"M. Villalobos, Yin Zhang","doi":"10.1145/1095242.1095246","DOIUrl":null,"url":null,"abstract":"Under mild conditions, the Jacobian associated with the Karush-Kuhn-Tucker (KKT) system of a non-convex, nonlinear program is nonsingular near an isolated solution. However, this property may not hold away from such a solution. To enhance the robustness and efficiency of the primal-dual interior-point approach, we propose a method that at each iteration solves a trust-region, least-squares problem associated with the linearized perturbed KKT conditions. As a merit function, we use the Euclidean norm-square of the KKT conditions and provide a theoretical justification. We present some preliminary numerical results.","PeriodicalId":229699,"journal":{"name":"2005 Richard Tapia Celebration of Diversity in Computing Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A trust-region interior-point method for nonlinear programming\",\"authors\":\"M. Villalobos, Yin Zhang\",\"doi\":\"10.1145/1095242.1095246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under mild conditions, the Jacobian associated with the Karush-Kuhn-Tucker (KKT) system of a non-convex, nonlinear program is nonsingular near an isolated solution. However, this property may not hold away from such a solution. To enhance the robustness and efficiency of the primal-dual interior-point approach, we propose a method that at each iteration solves a trust-region, least-squares problem associated with the linearized perturbed KKT conditions. As a merit function, we use the Euclidean norm-square of the KKT conditions and provide a theoretical justification. We present some preliminary numerical results.\",\"PeriodicalId\":229699,\"journal\":{\"name\":\"2005 Richard Tapia Celebration of Diversity in Computing Conference\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 Richard Tapia Celebration of Diversity in Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1095242.1095246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Richard Tapia Celebration of Diversity in Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1095242.1095246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在温和条件下,一类非凸非线性规划的Karush-Kuhn-Tucker (KKT)系统的雅可比矩阵在孤立解附近是非奇异的。然而,这种特性可能无法阻止这种解决方案。为了提高原对偶内点方法的鲁棒性和效率,我们提出了一种方法,在每次迭代中解决与线性化摄动KKT条件相关的信任区域最小二乘问题。作为一个价值函数,我们使用了KKT条件的欧几里得范数平方,并提供了一个理论证明。我们给出了一些初步的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A trust-region interior-point method for nonlinear programming
Under mild conditions, the Jacobian associated with the Karush-Kuhn-Tucker (KKT) system of a non-convex, nonlinear program is nonsingular near an isolated solution. However, this property may not hold away from such a solution. To enhance the robustness and efficiency of the primal-dual interior-point approach, we propose a method that at each iteration solves a trust-region, least-squares problem associated with the linearized perturbed KKT conditions. As a merit function, we use the Euclidean norm-square of the KKT conditions and provide a theoretical justification. We present some preliminary numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信