第一章:三点平稳和非平稳细分方案

Sunita Daniel, P. Shunmugaraj
{"title":"第一章:三点平稳和非平稳细分方案","authors":"Sunita Daniel, P. Shunmugaraj","doi":"10.1109/GMAI.2008.13","DOIUrl":null,"url":null,"abstract":"We present a family of 3-point binary approximating C-1 stationary subdivision schemes. The Chaikin 2-point scheme and a known 3-point scheme belong to this family of schemes. We also present a 3-point C-1 non-stationary subdivision scheme. This non-stationary scheme reproduces functions spanned by {1, sin(alphax), cos(alphax)}, 0 < alpha < pi/2 and, in particular, circles, ellipses and so on.","PeriodicalId":393559,"journal":{"name":"2008 3rd International Conference on Geometric Modeling and Imaging","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Chapter 1: Three Point Stationary and Non-stationary Subdivision Schemes\",\"authors\":\"Sunita Daniel, P. Shunmugaraj\",\"doi\":\"10.1109/GMAI.2008.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a family of 3-point binary approximating C-1 stationary subdivision schemes. The Chaikin 2-point scheme and a known 3-point scheme belong to this family of schemes. We also present a 3-point C-1 non-stationary subdivision scheme. This non-stationary scheme reproduces functions spanned by {1, sin(alphax), cos(alphax)}, 0 < alpha < pi/2 and, in particular, circles, ellipses and so on.\",\"PeriodicalId\":393559,\"journal\":{\"name\":\"2008 3rd International Conference on Geometric Modeling and Imaging\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd International Conference on Geometric Modeling and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GMAI.2008.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Geometric Modeling and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2008.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一类3点二元逼近C-1平稳细分格式。Chaikin 2点格式和已知的3点格式属于这类格式。我们还提出了一个3点C-1非平稳细分方案。这种非平稳方案再现了由{1,sin(alphax), cos(alphax)}, 0 < alpha < pi/2,特别是圆,椭圆等张成的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chapter 1: Three Point Stationary and Non-stationary Subdivision Schemes
We present a family of 3-point binary approximating C-1 stationary subdivision schemes. The Chaikin 2-point scheme and a known 3-point scheme belong to this family of schemes. We also present a 3-point C-1 non-stationary subdivision scheme. This non-stationary scheme reproduces functions spanned by {1, sin(alphax), cos(alphax)}, 0 < alpha < pi/2 and, in particular, circles, ellipses and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信