基于连接算子的工业机械臂定位算法

M. Tomic, Branko Miloradovic, M. Jankovic
{"title":"基于连接算子的工业机械臂定位算法","authors":"M. Tomic, Branko Miloradovic, M. Jankovic","doi":"10.1109/NEUREL.2012.6419964","DOIUrl":null,"url":null,"abstract":"In this paper the solution of inverse kinematics problem and positioning of the industrial manipulator (ROBED03) with five degrees of freedom are presented. The algorithm is based on combination of Artificial Neural Networks (ANN) and Genetic Algorithm (GA).ANN was used for rough positioning providing the inputs for GA which performs precise adjustment. The algorithm was successfully tested in robot's working space.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Connectionist-genetic based algorithm for positioning industrial manipulator\",\"authors\":\"M. Tomic, Branko Miloradovic, M. Jankovic\",\"doi\":\"10.1109/NEUREL.2012.6419964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the solution of inverse kinematics problem and positioning of the industrial manipulator (ROBED03) with five degrees of freedom are presented. The algorithm is based on combination of Artificial Neural Networks (ANN) and Genetic Algorithm (GA).ANN was used for rough positioning providing the inputs for GA which performs precise adjustment. The algorithm was successfully tested in robot's working space.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了五自由度工业机械手(ROBED03)的运动学逆解和定位方法。该算法基于人工神经网络(ANN)和遗传算法(GA)的结合。神经网络用于粗定位,为遗传算法提供输入,遗传算法进行精确调整。该算法在机器人工作空间中得到了成功的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectionist-genetic based algorithm for positioning industrial manipulator
In this paper the solution of inverse kinematics problem and positioning of the industrial manipulator (ROBED03) with five degrees of freedom are presented. The algorithm is based on combination of Artificial Neural Networks (ANN) and Genetic Algorithm (GA).ANN was used for rough positioning providing the inputs for GA which performs precise adjustment. The algorithm was successfully tested in robot's working space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信