{"title":"基于列表可恢复码纠错的无源随机接入","authors":"K. Andreev, P. Rybin, A. Frolov","doi":"10.1109/ITW48936.2021.9611447","DOIUrl":null,"url":null,"abstract":"We consider the unsourced random access based on a coded compressed sensing approach. The main idea is to replace the outer tree code proposed by Amalladinne et al. with the code capable of correcting t errors. We derive a finite-length random coding bound for such codes and suggest a practical code construction. We have conducted numerical experiments in the single antenna quasi-static Rayleigh fading MAC. The results show that transition to list-recoverable codes correcting t errors allows performance improvement of coded compressed sensing scheme by 7–10 dB compared to the tree code-based scheme.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Unsourced Random Access Based on List Recoverable Codes Correcting t Errors\",\"authors\":\"K. Andreev, P. Rybin, A. Frolov\",\"doi\":\"10.1109/ITW48936.2021.9611447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the unsourced random access based on a coded compressed sensing approach. The main idea is to replace the outer tree code proposed by Amalladinne et al. with the code capable of correcting t errors. We derive a finite-length random coding bound for such codes and suggest a practical code construction. We have conducted numerical experiments in the single antenna quasi-static Rayleigh fading MAC. The results show that transition to list-recoverable codes correcting t errors allows performance improvement of coded compressed sensing scheme by 7–10 dB compared to the tree code-based scheme.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsourced Random Access Based on List Recoverable Codes Correcting t Errors
We consider the unsourced random access based on a coded compressed sensing approach. The main idea is to replace the outer tree code proposed by Amalladinne et al. with the code capable of correcting t errors. We derive a finite-length random coding bound for such codes and suggest a practical code construction. We have conducted numerical experiments in the single antenna quasi-static Rayleigh fading MAC. The results show that transition to list-recoverable codes correcting t errors allows performance improvement of coded compressed sensing scheme by 7–10 dB compared to the tree code-based scheme.