基于实例学习的模糊神经元隶属函数设计算法

T. Yamakawa, Masuo Furukawa
{"title":"基于实例学习的模糊神经元隶属函数设计算法","authors":"T. Yamakawa, Masuo Furukawa","doi":"10.1109/FUZZY.1992.258599","DOIUrl":null,"url":null,"abstract":"The authors describe a design algorithm for extraction of membership functions of a fuzzy neuron based on example-based learning with optimization of cross-detecting lines. This algorithm facilitates design without the knowledge of experts. The algorithm was verified by recognition of hand-written characters. Using this algorithm, a fuzzy neuron can be designed very easily without knowledge about the features of the character, and optimum membership functions can be extracted.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A design algorithm of membership functions for a fuzzy neuron using example-based learning\",\"authors\":\"T. Yamakawa, Masuo Furukawa\",\"doi\":\"10.1109/FUZZY.1992.258599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a design algorithm for extraction of membership functions of a fuzzy neuron based on example-based learning with optimization of cross-detecting lines. This algorithm facilitates design without the knowledge of experts. The algorithm was verified by recognition of hand-written characters. Using this algorithm, a fuzzy neuron can be designed very easily without knowledge about the features of the character, and optimum membership functions can be extracted.<<ETX>>\",\"PeriodicalId\":222263,\"journal\":{\"name\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992 Proceedings] IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1992.258599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

提出了一种基于实例学习的模糊神经元隶属函数提取的设计算法。该算法在没有专家知识的情况下简化了设计。通过对手写体的识别验证了该算法的有效性。该算法可以在不知道字符特征的情况下很容易地设计模糊神经元,并提取出最优的隶属函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A design algorithm of membership functions for a fuzzy neuron using example-based learning
The authors describe a design algorithm for extraction of membership functions of a fuzzy neuron based on example-based learning with optimization of cross-detecting lines. This algorithm facilitates design without the knowledge of experts. The algorithm was verified by recognition of hand-written characters. Using this algorithm, a fuzzy neuron can be designed very easily without knowledge about the features of the character, and optimum membership functions can be extracted.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信