C. Pérez-Penichet, Claro Noda, Ambuj Varshney, T. Voigt
{"title":"无电池802.15.4接收器","authors":"C. Pérez-Penichet, Claro Noda, Ambuj Varshney, T. Voigt","doi":"10.1109/IPSN.2018.00045","DOIUrl":null,"url":null,"abstract":"We present the architecture of an 802.15.4 receiver that, for the first time, operates at a few hundred microwatts, enabling new battery-free applications. To reach the required micro-power consumption, the architecture diverges from that of commodity receivers in two important ways. First, it offloads the power-hungry local oscillator to an external device, much like backscatter transmitters do. Second, we avoid the energy cost of demodulating a phase-modulated signal by treating 802.15.4 as a frequency-modulated one, which allows us to receive with a simple passive detector and an energy-efficient thresholding circuit. We describe a prototype that can receive 802.15.4 frames with a power consumption of 361 μW. Our receiver prototype achieves sufficient communication range to integrate with deployed wireless sensor networks (WSNs).We illustrate this integration by pairing the prototype with an 802.15.4 backscatter transmitter and integrating it with unmodified 802.15.4 sensor nodes running the TSCH and Glossy protocols.","PeriodicalId":358074,"journal":{"name":"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Battery-Free 802.15.4 Receiver\",\"authors\":\"C. Pérez-Penichet, Claro Noda, Ambuj Varshney, T. Voigt\",\"doi\":\"10.1109/IPSN.2018.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the architecture of an 802.15.4 receiver that, for the first time, operates at a few hundred microwatts, enabling new battery-free applications. To reach the required micro-power consumption, the architecture diverges from that of commodity receivers in two important ways. First, it offloads the power-hungry local oscillator to an external device, much like backscatter transmitters do. Second, we avoid the energy cost of demodulating a phase-modulated signal by treating 802.15.4 as a frequency-modulated one, which allows us to receive with a simple passive detector and an energy-efficient thresholding circuit. We describe a prototype that can receive 802.15.4 frames with a power consumption of 361 μW. Our receiver prototype achieves sufficient communication range to integrate with deployed wireless sensor networks (WSNs).We illustrate this integration by pairing the prototype with an 802.15.4 backscatter transmitter and integrating it with unmodified 802.15.4 sensor nodes running the TSCH and Glossy protocols.\",\"PeriodicalId\":358074,\"journal\":{\"name\":\"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPSN.2018.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present the architecture of an 802.15.4 receiver that, for the first time, operates at a few hundred microwatts, enabling new battery-free applications. To reach the required micro-power consumption, the architecture diverges from that of commodity receivers in two important ways. First, it offloads the power-hungry local oscillator to an external device, much like backscatter transmitters do. Second, we avoid the energy cost of demodulating a phase-modulated signal by treating 802.15.4 as a frequency-modulated one, which allows us to receive with a simple passive detector and an energy-efficient thresholding circuit. We describe a prototype that can receive 802.15.4 frames with a power consumption of 361 μW. Our receiver prototype achieves sufficient communication range to integrate with deployed wireless sensor networks (WSNs).We illustrate this integration by pairing the prototype with an 802.15.4 backscatter transmitter and integrating it with unmodified 802.15.4 sensor nodes running the TSCH and Glossy protocols.