基于分布式压缩感知的MIMO-OFDM信道估计

B. Priyanka, K. Rajeswari, S. Thiruvengadam
{"title":"基于分布式压缩感知的MIMO-OFDM信道估计","authors":"B. Priyanka, K. Rajeswari, S. Thiruvengadam","doi":"10.1109/ICCIC.2014.7238317","DOIUrl":null,"url":null,"abstract":"This paper proposes a method of sparse channel estimation using compressed sensing for MIMO-OFDM system. The channel estimation is formulated as a sparse recovery problem because of the maximum delay spread in the high data rate OFDM communication systems. The proposed Distributed Compressed Sensing (DCS) algorithm for channel estimation in MIMO-OFDM system exploits the join sparsity of the MIMO channel. It takes less number of iterations in solving the channel estimation problem and runs much faster than the existing Compressive Sampling Matching Pursuit (CoSaMP). Simulation results demonstrate the validity of the algorithm. For the MIMO channels of unknown sparse degrees, the proposed DCS algorithm gives good channel estimation performance with less number of subcarriers reducing the complexity of the system.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MIMO-OFDM channel estimation using distributed compressed sensing\",\"authors\":\"B. Priyanka, K. Rajeswari, S. Thiruvengadam\",\"doi\":\"10.1109/ICCIC.2014.7238317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method of sparse channel estimation using compressed sensing for MIMO-OFDM system. The channel estimation is formulated as a sparse recovery problem because of the maximum delay spread in the high data rate OFDM communication systems. The proposed Distributed Compressed Sensing (DCS) algorithm for channel estimation in MIMO-OFDM system exploits the join sparsity of the MIMO channel. It takes less number of iterations in solving the channel estimation problem and runs much faster than the existing Compressive Sampling Matching Pursuit (CoSaMP). Simulation results demonstrate the validity of the algorithm. For the MIMO channels of unknown sparse degrees, the proposed DCS algorithm gives good channel estimation performance with less number of subcarriers reducing the complexity of the system.\",\"PeriodicalId\":187874,\"journal\":{\"name\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Computational Intelligence and Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIC.2014.7238317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于压缩感知的MIMO-OFDM系统稀疏信道估计方法。在高数据速率OFDM通信系统中,由于最大的时延扩展,信道估计被表述为一个稀疏恢复问题。利用MIMO- ofdm信道的连接稀疏性,提出了一种用于MIMO- ofdm信道估计的分布式压缩感知(DCS)算法。与现有的压缩采样匹配追踪(CoSaMP)算法相比,该算法在解决信道估计问题时迭代次数少,运行速度快。仿真结果验证了该算法的有效性。对于稀疏度未知的MIMO信道,DCS算法具有较好的信道估计性能,且子载波数量较少,降低了系统的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIMO-OFDM channel estimation using distributed compressed sensing
This paper proposes a method of sparse channel estimation using compressed sensing for MIMO-OFDM system. The channel estimation is formulated as a sparse recovery problem because of the maximum delay spread in the high data rate OFDM communication systems. The proposed Distributed Compressed Sensing (DCS) algorithm for channel estimation in MIMO-OFDM system exploits the join sparsity of the MIMO channel. It takes less number of iterations in solving the channel estimation problem and runs much faster than the existing Compressive Sampling Matching Pursuit (CoSaMP). Simulation results demonstrate the validity of the algorithm. For the MIMO channels of unknown sparse degrees, the proposed DCS algorithm gives good channel estimation performance with less number of subcarriers reducing the complexity of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信