{"title":"海量线程科学可视化算法分类","authors":"K. Moreland, Berk Geveci, K. Ma, Robert Maynard","doi":"10.1145/2535571.2535591","DOIUrl":null,"url":null,"abstract":"As the number of cores in processors increase and accelerator architectures are becoming more common, an ever greater number of threads is required to achieve full processor utilization. Our current parallel scientific visualization codes rely on partitioning data to achieve parallel processing, but this approach will not scale as we approach massive threading in which work is distributed in such a fine level that each thread is responsible for a minute portion of data. In this paper we characterize the challenges of refactoring our current visualization algorithms by considering the finest portion of work each performs and examining the domain of input data, overlaps of output domains, and interdependencies among work instances. We divide our visualization algorithms into eight categories, each containing algorithms with the same interdependencies. By focusing our research efforts to solving these categorial challenges rather than this legion of individual algorithms, we can make attainable advancement for extreme computing.","PeriodicalId":262085,"journal":{"name":"Proceedings of the 8th International Workshop on Ultrascale Visualization","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A classification of scientific visualization algorithms for massive threading\",\"authors\":\"K. Moreland, Berk Geveci, K. Ma, Robert Maynard\",\"doi\":\"10.1145/2535571.2535591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of cores in processors increase and accelerator architectures are becoming more common, an ever greater number of threads is required to achieve full processor utilization. Our current parallel scientific visualization codes rely on partitioning data to achieve parallel processing, but this approach will not scale as we approach massive threading in which work is distributed in such a fine level that each thread is responsible for a minute portion of data. In this paper we characterize the challenges of refactoring our current visualization algorithms by considering the finest portion of work each performs and examining the domain of input data, overlaps of output domains, and interdependencies among work instances. We divide our visualization algorithms into eight categories, each containing algorithms with the same interdependencies. By focusing our research efforts to solving these categorial challenges rather than this legion of individual algorithms, we can make attainable advancement for extreme computing.\",\"PeriodicalId\":262085,\"journal\":{\"name\":\"Proceedings of the 8th International Workshop on Ultrascale Visualization\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Workshop on Ultrascale Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535571.2535591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Ultrascale Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535571.2535591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A classification of scientific visualization algorithms for massive threading
As the number of cores in processors increase and accelerator architectures are becoming more common, an ever greater number of threads is required to achieve full processor utilization. Our current parallel scientific visualization codes rely on partitioning data to achieve parallel processing, but this approach will not scale as we approach massive threading in which work is distributed in such a fine level that each thread is responsible for a minute portion of data. In this paper we characterize the challenges of refactoring our current visualization algorithms by considering the finest portion of work each performs and examining the domain of input data, overlaps of output domains, and interdependencies among work instances. We divide our visualization algorithms into eight categories, each containing algorithms with the same interdependencies. By focusing our research efforts to solving these categorial challenges rather than this legion of individual algorithms, we can make attainable advancement for extreme computing.