基于多层感知器的下一代全双工蜂窝系统波束形成器设计

S. Biswas, Umesh Singh, Kaustuv Nag
{"title":"基于多层感知器的下一代全双工蜂窝系统波束形成器设计","authors":"S. Biswas, Umesh Singh, Kaustuv Nag","doi":"10.1109/SNPD51163.2021.9704974","DOIUrl":null,"url":null,"abstract":"An in-band full-duplex (IBFD) multiple-input multiple-output (MIMO) radio’s self-interference (SI) and co-channel interference (CCI) cancellation strengths usually determine its performance gains over conventional half-duplex ones. Accordingly, this paper explores an alternative to traditional optimization driven design (ODD) techniques available in the literature for beamformer design in IBFD radios. In particular, to mitigate the residual SI and CCI, we propose a run-time data-driven prediction approach to predict the beamforming matrices at the uplink users and the base station. First, we formulate an ODD-based beamforming design problem, which we structurally optimize through sum-rate maximization, and cast it as a second-order cone programming problem. Then, we repeatedly solve this problem to generate a dataset forming a multiple multivariate regression problem. We use the dataset to train a multi-layer perceptron (MLP) employing a supervised learning scheme to solve the associated regression problem. Experimental results demonstrate that the MLP based beamformer design achieves a near-optimal performance at a remarkably high speed for reasonable residual SI and CCI cancellation without the need for explicit channel estimation.","PeriodicalId":235370,"journal":{"name":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Layer Perceptron-based Beamformer Design for Next-Generation Full-Duplex Cellular Systems\",\"authors\":\"S. Biswas, Umesh Singh, Kaustuv Nag\",\"doi\":\"10.1109/SNPD51163.2021.9704974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An in-band full-duplex (IBFD) multiple-input multiple-output (MIMO) radio’s self-interference (SI) and co-channel interference (CCI) cancellation strengths usually determine its performance gains over conventional half-duplex ones. Accordingly, this paper explores an alternative to traditional optimization driven design (ODD) techniques available in the literature for beamformer design in IBFD radios. In particular, to mitigate the residual SI and CCI, we propose a run-time data-driven prediction approach to predict the beamforming matrices at the uplink users and the base station. First, we formulate an ODD-based beamforming design problem, which we structurally optimize through sum-rate maximization, and cast it as a second-order cone programming problem. Then, we repeatedly solve this problem to generate a dataset forming a multiple multivariate regression problem. We use the dataset to train a multi-layer perceptron (MLP) employing a supervised learning scheme to solve the associated regression problem. Experimental results demonstrate that the MLP based beamformer design achieves a near-optimal performance at a remarkably high speed for reasonable residual SI and CCI cancellation without the need for explicit channel estimation.\",\"PeriodicalId\":235370,\"journal\":{\"name\":\"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD51163.2021.9704974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD51163.2021.9704974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

带内全双工(IBFD)多输入多输出(MIMO)无线电的自干扰(SI)和同信道干扰(CCI)消除强度通常决定其性能优于传统的半双工无线电。因此,本文探索了一种替代传统优化驱动设计(ODD)技术的方法,可用于IBFD无线电的波束形成器设计。特别地,为了减少残余SI和CCI,我们提出了一种运行时数据驱动的预测方法来预测上行用户和基站的波束形成矩阵。首先,我们提出了一个基于odd的波束形成设计问题,并通过和率最大化进行结构优化,将其转化为一个二阶锥规划问题。然后,我们反复求解这个问题,生成一个数据集,形成一个多元回归问题。我们使用数据集来训练多层感知器(MLP),采用监督学习方案来解决相关的回归问题。实验结果表明,基于MLP的波束形成器设计在不需要显式信道估计的情况下,以非常高的速度实现了近乎最佳的剩余SI和CCI抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Layer Perceptron-based Beamformer Design for Next-Generation Full-Duplex Cellular Systems
An in-band full-duplex (IBFD) multiple-input multiple-output (MIMO) radio’s self-interference (SI) and co-channel interference (CCI) cancellation strengths usually determine its performance gains over conventional half-duplex ones. Accordingly, this paper explores an alternative to traditional optimization driven design (ODD) techniques available in the literature for beamformer design in IBFD radios. In particular, to mitigate the residual SI and CCI, we propose a run-time data-driven prediction approach to predict the beamforming matrices at the uplink users and the base station. First, we formulate an ODD-based beamforming design problem, which we structurally optimize through sum-rate maximization, and cast it as a second-order cone programming problem. Then, we repeatedly solve this problem to generate a dataset forming a multiple multivariate regression problem. We use the dataset to train a multi-layer perceptron (MLP) employing a supervised learning scheme to solve the associated regression problem. Experimental results demonstrate that the MLP based beamformer design achieves a near-optimal performance at a remarkably high speed for reasonable residual SI and CCI cancellation without the need for explicit channel estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信