用切比雪夫多项式提高相位映射的质量

Y. Kotsiuba, V. Fitio, H. Petrovska, Y. Bobitski
{"title":"用切比雪夫多项式提高相位映射的质量","authors":"Y. Kotsiuba, V. Fitio, H. Petrovska, Y. Bobitski","doi":"10.1109/ELIT53502.2021.9501097","DOIUrl":null,"url":null,"abstract":"The possibilities of using Chebyshev orthogonal polynomials for filtering digital interferograms and phase maps in the one-dimensional case of deformation are analyzed. It is proposed to find the coefficients of the decomposition of functions, replacing the integration with the corresponding summation using a certain control factor to eliminate infinity in mathematical expressions. Numerical simulations show that the use of Chebyshev polynomials significantly improves the quality of phase maps.","PeriodicalId":164798,"journal":{"name":"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Quality of the Phase Maps by Chebyshev Polynomials\",\"authors\":\"Y. Kotsiuba, V. Fitio, H. Petrovska, Y. Bobitski\",\"doi\":\"10.1109/ELIT53502.2021.9501097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibilities of using Chebyshev orthogonal polynomials for filtering digital interferograms and phase maps in the one-dimensional case of deformation are analyzed. It is proposed to find the coefficients of the decomposition of functions, replacing the integration with the corresponding summation using a certain control factor to eliminate infinity in mathematical expressions. Numerical simulations show that the use of Chebyshev polynomials significantly improves the quality of phase maps.\",\"PeriodicalId\":164798,\"journal\":{\"name\":\"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELIT53502.2021.9501097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELIT53502.2021.9501097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析了用切比雪夫正交多项式滤波一维变形情况下的数字干涉图和相位图的可能性。提出了求函数分解的系数,用一定的控制因子将积分替换为相应的求和,从而消除数学表达式中的无穷。数值模拟结果表明,切比雪夫多项式的使用显著提高了相位图的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Quality of the Phase Maps by Chebyshev Polynomials
The possibilities of using Chebyshev orthogonal polynomials for filtering digital interferograms and phase maps in the one-dimensional case of deformation are analyzed. It is proposed to find the coefficients of the decomposition of functions, replacing the integration with the corresponding summation using a certain control factor to eliminate infinity in mathematical expressions. Numerical simulations show that the use of Chebyshev polynomials significantly improves the quality of phase maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信