基于非负、平滑和稀疏矩阵分解的PET图像重构和特征提取方法

Kazuya Kawai, H. Hontani, Tatsuya Yokota, M. Sakata, Y. Kimura
{"title":"基于非负、平滑和稀疏矩阵分解的PET图像重构和特征提取方法","authors":"Kazuya Kawai, H. Hontani, Tatsuya Yokota, M. Sakata, Y. Kimura","doi":"10.23919/APSIPA.2018.8659467","DOIUrl":null,"url":null,"abstract":"Positron emission tomography (PET) is an important imaging technique to visualize a number of functions in the brain or human body. For reconstructing PET images from the sinogram data, an inverse problem has to be solved using numerical optimizations such as expectation-maximization (EM)-based methods. However, the standard EM method suffers from measurement noise added in the sinogram data. In this paper, we propose a new simultaneous PET image reconstruction and parts extraction method using constrained non-negative matrix factorization. In contrast that the many existing methods reconstruct a single PET image independently, we reconstruct the time-series of PET images simultaneously from the time-series of sinograms using non-negative matrix factorization. Furthermore, we impose the smoothness constraint for the temporal feature, and the exclusive LASSO-based sparseness constraint for the spatial feature for robust image reconstruction and physically meaningful feature extraction.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simultaneous PET Image Reconstruction and Feature Extraction Method using Non-negative, Smooth, and Sparse Matrix Factorization\",\"authors\":\"Kazuya Kawai, H. Hontani, Tatsuya Yokota, M. Sakata, Y. Kimura\",\"doi\":\"10.23919/APSIPA.2018.8659467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positron emission tomography (PET) is an important imaging technique to visualize a number of functions in the brain or human body. For reconstructing PET images from the sinogram data, an inverse problem has to be solved using numerical optimizations such as expectation-maximization (EM)-based methods. However, the standard EM method suffers from measurement noise added in the sinogram data. In this paper, we propose a new simultaneous PET image reconstruction and parts extraction method using constrained non-negative matrix factorization. In contrast that the many existing methods reconstruct a single PET image independently, we reconstruct the time-series of PET images simultaneously from the time-series of sinograms using non-negative matrix factorization. Furthermore, we impose the smoothness constraint for the temporal feature, and the exclusive LASSO-based sparseness constraint for the spatial feature for robust image reconstruction and physically meaningful feature extraction.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

正电子发射断层扫描(PET)是一种重要的成像技术,可以显示大脑或人体的许多功能。为了从正弦图数据中重建PET图像,必须使用基于期望最大化(EM)的数值优化方法来解决一个逆问题。然而,标准的电磁测量方法受到正弦图数据中附加的测量噪声的影响。本文提出了一种基于约束非负矩阵分解的PET图像同步重建和部分提取方法。与现有的许多方法独立重建单个PET图像相比,我们使用非负矩阵分解从图像的时间序列同时重建PET图像的时间序列。此外,我们对时间特征施加平滑约束,对空间特征施加基于lasso的稀疏约束,以实现图像的鲁棒重建和有物理意义的特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous PET Image Reconstruction and Feature Extraction Method using Non-negative, Smooth, and Sparse Matrix Factorization
Positron emission tomography (PET) is an important imaging technique to visualize a number of functions in the brain or human body. For reconstructing PET images from the sinogram data, an inverse problem has to be solved using numerical optimizations such as expectation-maximization (EM)-based methods. However, the standard EM method suffers from measurement noise added in the sinogram data. In this paper, we propose a new simultaneous PET image reconstruction and parts extraction method using constrained non-negative matrix factorization. In contrast that the many existing methods reconstruct a single PET image independently, we reconstruct the time-series of PET images simultaneously from the time-series of sinograms using non-negative matrix factorization. Furthermore, we impose the smoothness constraint for the temporal feature, and the exclusive LASSO-based sparseness constraint for the spatial feature for robust image reconstruction and physically meaningful feature extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信