Matthew Ekstrand-Abueg, R. McCreadie, Virgil Pavlu, Fernando Diaz
{"title":"实时总结度量的研究","authors":"Matthew Ekstrand-Abueg, R. McCreadie, Virgil Pavlu, Fernando Diaz","doi":"10.1145/2983323.2983653","DOIUrl":null,"url":null,"abstract":"Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Study of Realtime Summarization Metrics\",\"authors\":\"Matthew Ekstrand-Abueg, R. McCreadie, Virgil Pavlu, Fernando Diaz\",\"doi\":\"10.1145/2983323.2983653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems.