实时总结度量的研究

Matthew Ekstrand-Abueg, R. McCreadie, Virgil Pavlu, Fernando Diaz
{"title":"实时总结度量的研究","authors":"Matthew Ekstrand-Abueg, R. McCreadie, Virgil Pavlu, Fernando Diaz","doi":"10.1145/2983323.2983653","DOIUrl":null,"url":null,"abstract":"Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Study of Realtime Summarization Metrics\",\"authors\":\"Matthew Ekstrand-Abueg, R. McCreadie, Virgil Pavlu, Fernando Diaz\",\"doi\":\"10.1145/2983323.2983653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

意外的新闻事件,如自然灾害或其他人类悲剧,从官方新闻媒体以及不太正式的社交媒体中产生了大量的动态文本数据。自动实时文本摘要已经成为一种重要的工具,它可以将这些过多的文本快速转换为最终用户(包括受影响的个人、危机响应者和感兴趣的第三方)清晰、有用的信息。尽管实时摘要系统很重要,但由于经典的文本摘要方法不适合实时和流条件,因此对其评估的理解并不好。TREC 2013-2015时间摘要(TREC- ts)轨道是解决实时摘要评估挑战的首批评估活动之一,引入了新的指标,地面真实生成方法和数据集。在本文中,我们提出了一项关于TREC-TS轨道评估方法的研究,目的是记录其设计,分析其有效性,以及确定评估时间摘要系统的改进和最佳实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Realtime Summarization Metrics
Unexpected news events, such as natural disasters or other human tragedies, create a large volume of dynamic text data from official news media as well as less formal social media. Automatic real-time text summarization has become an important tool for quickly transforming this overabundance of text into clear, useful information for end-users including affected individuals, crisis responders, and interested third parties. Despite the importance of real-time summarization systems, their evaluation is not well understood as classic methods for text summarization are inappropriate for real-time and streaming conditions. The TREC 2013-2015 Temporal Summarization (TREC-TS) track was one of the first evaluation campaigns to tackle the challenges of real-time summarization evaluation, introducing new metrics, ground-truth generation methodology and dataset. In this paper, we present a study of TREC-TS track evaluation methodology, with the aim of documenting its design, analyzing its effectiveness, as well as identifying improvements and best practices for the evaluation of temporal summarization systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信