整合推荐模型,提高网页预测精度

F. Khalil, Jiuyong Li, Hua Wang
{"title":"整合推荐模型,提高网页预测精度","authors":"F. Khalil, Jiuyong Li, Hua Wang","doi":"10.1145/1378279.1378296","DOIUrl":null,"url":null,"abstract":"Recent research initiatives have addressed the need for improved performance of Web page prediction accuracy that would profit many applications, e-business in particular. Different Web usage mining frameworks have been implemented for this purpose specifically Association rules, clustering, and Markov model. Each of these frameworks has its own strengths and weaknesses and it has been proved that using each of these frameworks individually does not provide a suitable solution that answers today's Web page prediction needs. This paper endeavors to provide an improved Web page prediction accuracy by using a novel approach that involves integrating clustering, association rules and Markov models according to some constraints. Experimental results prove that this integration provides better prediction accuracy than using each technique individually.","PeriodicalId":136130,"journal":{"name":"Australasian Computer Science Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Integrating recommendation models for improved web page prediction accuracy\",\"authors\":\"F. Khalil, Jiuyong Li, Hua Wang\",\"doi\":\"10.1145/1378279.1378296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research initiatives have addressed the need for improved performance of Web page prediction accuracy that would profit many applications, e-business in particular. Different Web usage mining frameworks have been implemented for this purpose specifically Association rules, clustering, and Markov model. Each of these frameworks has its own strengths and weaknesses and it has been proved that using each of these frameworks individually does not provide a suitable solution that answers today's Web page prediction needs. This paper endeavors to provide an improved Web page prediction accuracy by using a novel approach that involves integrating clustering, association rules and Markov models according to some constraints. Experimental results prove that this integration provides better prediction accuracy than using each technique individually.\",\"PeriodicalId\":136130,\"journal\":{\"name\":\"Australasian Computer Science Conference\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Computer Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1378279.1378296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Computer Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1378279.1378296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

最近的研究活动已经解决了提高Web页面预测准确性性能的需求,这将使许多应用程序受益,特别是电子商务。为此,已经实现了不同的Web使用挖掘框架,特别是关联规则、聚类和马尔可夫模型。这些框架都有自己的优点和缺点,并且已经证明单独使用这些框架并不能提供满足当今Web页面预测需求的合适解决方案。本文采用一种基于约束条件的聚类、关联规则和马尔可夫模型相结合的方法来提高网页预测精度。实验结果表明,与单独使用每种技术相比,该方法具有更好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating recommendation models for improved web page prediction accuracy
Recent research initiatives have addressed the need for improved performance of Web page prediction accuracy that would profit many applications, e-business in particular. Different Web usage mining frameworks have been implemented for this purpose specifically Association rules, clustering, and Markov model. Each of these frameworks has its own strengths and weaknesses and it has been proved that using each of these frameworks individually does not provide a suitable solution that answers today's Web page prediction needs. This paper endeavors to provide an improved Web page prediction accuracy by using a novel approach that involves integrating clustering, association rules and Markov models according to some constraints. Experimental results prove that this integration provides better prediction accuracy than using each technique individually.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信