空间机器人模糊神经网络鲁棒跟踪控制

Changhong Wang, Baomin Feng, G. Ma, Chuang Ma
{"title":"空间机器人模糊神经网络鲁棒跟踪控制","authors":"Changhong Wang, Baomin Feng, G. Ma, Chuang Ma","doi":"10.1109/CIRA.2005.1554274","DOIUrl":null,"url":null,"abstract":"This paper proposes for space robots a robust fuzzy neural network (FNN) controller, which does not require linear parameterization necessary for standard adaptive control of fixed-base robot manipulator. With suitable modifications, this FNN tracking controller can achieve high-precision position control. Simulation results of a two-link planar space robot verify the validity of the proposed RFNN controller in the presence of uncertainties.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Robust tracking control of space robots using fuzzy neural network\",\"authors\":\"Changhong Wang, Baomin Feng, G. Ma, Chuang Ma\",\"doi\":\"10.1109/CIRA.2005.1554274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes for space robots a robust fuzzy neural network (FNN) controller, which does not require linear parameterization necessary for standard adaptive control of fixed-base robot manipulator. With suitable modifications, this FNN tracking controller can achieve high-precision position control. Simulation results of a two-link planar space robot verify the validity of the proposed RFNN controller in the presence of uncertainties.\",\"PeriodicalId\":162553,\"journal\":{\"name\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2005.1554274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文针对空间机器人提出了一种鲁棒模糊神经网络(FNN)控制器,该控制器不需要固定基机器人机械手标准自适应控制所必需的线性参数化。通过适当的修改,该FNN跟踪控制器可以实现高精度的位置控制。两连杆平面空间机器人的仿真结果验证了该控制器在不确定性条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust tracking control of space robots using fuzzy neural network
This paper proposes for space robots a robust fuzzy neural network (FNN) controller, which does not require linear parameterization necessary for standard adaptive control of fixed-base robot manipulator. With suitable modifications, this FNN tracking controller can achieve high-precision position control. Simulation results of a two-link planar space robot verify the validity of the proposed RFNN controller in the presence of uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信