{"title":"空间机器人模糊神经网络鲁棒跟踪控制","authors":"Changhong Wang, Baomin Feng, G. Ma, Chuang Ma","doi":"10.1109/CIRA.2005.1554274","DOIUrl":null,"url":null,"abstract":"This paper proposes for space robots a robust fuzzy neural network (FNN) controller, which does not require linear parameterization necessary for standard adaptive control of fixed-base robot manipulator. With suitable modifications, this FNN tracking controller can achieve high-precision position control. Simulation results of a two-link planar space robot verify the validity of the proposed RFNN controller in the presence of uncertainties.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Robust tracking control of space robots using fuzzy neural network\",\"authors\":\"Changhong Wang, Baomin Feng, G. Ma, Chuang Ma\",\"doi\":\"10.1109/CIRA.2005.1554274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes for space robots a robust fuzzy neural network (FNN) controller, which does not require linear parameterization necessary for standard adaptive control of fixed-base robot manipulator. With suitable modifications, this FNN tracking controller can achieve high-precision position control. Simulation results of a two-link planar space robot verify the validity of the proposed RFNN controller in the presence of uncertainties.\",\"PeriodicalId\":162553,\"journal\":{\"name\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2005.1554274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust tracking control of space robots using fuzzy neural network
This paper proposes for space robots a robust fuzzy neural network (FNN) controller, which does not require linear parameterization necessary for standard adaptive control of fixed-base robot manipulator. With suitable modifications, this FNN tracking controller can achieve high-precision position control. Simulation results of a two-link planar space robot verify the validity of the proposed RFNN controller in the presence of uncertainties.