神经模糊技术在商业性工作者宫颈病变筛查中的应用

Bolaji Efosa Odigie, P. Achukwu, M. E. Bello
{"title":"神经模糊技术在商业性工作者宫颈病变筛查中的应用","authors":"Bolaji Efosa Odigie, P. Achukwu, M. E. Bello","doi":"10.1504/IJMEI.2018.10014084","DOIUrl":null,"url":null,"abstract":"This study proposed a neuro-fuzzy model for cervical lesions (CL) detection in commercial sex workers. Our aim is to formulate an understandable and practicable model for CL screening of commercial sex workers (CSWs) operating in rural communities in Edo State, Nigeria. The specific objective is to confirm the levels of precision of the neuro-fuzzy model using liquid-based cytology (LBC) method. The adaptive neuro-fuzzy inference system (ANFIS) implementation was used for screening and LBC techniques for confirmation of the ANFIS outcomes. The classification performance of ANFIS model had 98.7% precision with a training error of 1.1652 and basic testing error 1.255. LBC showed eight cases of CL (15.4%) from 259 prostitutes and was age and duration of commercial sex-dependent (P < 0.05). The present ANFIS implemented model is excellent for routine screening of the CSWs, while LBC remains a gold standard for CL diagnosis worldwide.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neuro-fuzzy implementation for cervical lesions screening in commercial sex workers\",\"authors\":\"Bolaji Efosa Odigie, P. Achukwu, M. E. Bello\",\"doi\":\"10.1504/IJMEI.2018.10014084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed a neuro-fuzzy model for cervical lesions (CL) detection in commercial sex workers. Our aim is to formulate an understandable and practicable model for CL screening of commercial sex workers (CSWs) operating in rural communities in Edo State, Nigeria. The specific objective is to confirm the levels of precision of the neuro-fuzzy model using liquid-based cytology (LBC) method. The adaptive neuro-fuzzy inference system (ANFIS) implementation was used for screening and LBC techniques for confirmation of the ANFIS outcomes. The classification performance of ANFIS model had 98.7% precision with a training error of 1.1652 and basic testing error 1.255. LBC showed eight cases of CL (15.4%) from 259 prostitutes and was age and duration of commercial sex-dependent (P < 0.05). The present ANFIS implemented model is excellent for routine screening of the CSWs, while LBC remains a gold standard for CL diagnosis worldwide.\",\"PeriodicalId\":193362,\"journal\":{\"name\":\"Int. J. Medical Eng. Informatics\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Medical Eng. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMEI.2018.10014084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMEI.2018.10014084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究提出了一种用于商业性工作者宫颈病变(CL)检测的神经模糊模型。我们的目标是为尼日利亚埃多州农村社区的商业性工作者(CSWs)制定一个可理解和可行的CL筛查模型。具体目标是确认使用液体细胞学(LBC)方法的神经模糊模型的精度水平。采用自适应神经模糊推理系统(ANFIS)实现筛选和LBC技术确认ANFIS结果。ANFIS模型的分类精度为98.7%,训练误差为1.1652,基本测试误差为1.255。259名妓女LBC中CL 8例(15.4%),与卖淫年龄和持续时间有关(P < 0.05)。目前的ANFIS实施模型对于csw的常规筛查非常出色,而LBC仍然是全球CL诊断的金标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuro-fuzzy implementation for cervical lesions screening in commercial sex workers
This study proposed a neuro-fuzzy model for cervical lesions (CL) detection in commercial sex workers. Our aim is to formulate an understandable and practicable model for CL screening of commercial sex workers (CSWs) operating in rural communities in Edo State, Nigeria. The specific objective is to confirm the levels of precision of the neuro-fuzzy model using liquid-based cytology (LBC) method. The adaptive neuro-fuzzy inference system (ANFIS) implementation was used for screening and LBC techniques for confirmation of the ANFIS outcomes. The classification performance of ANFIS model had 98.7% precision with a training error of 1.1652 and basic testing error 1.255. LBC showed eight cases of CL (15.4%) from 259 prostitutes and was age and duration of commercial sex-dependent (P < 0.05). The present ANFIS implemented model is excellent for routine screening of the CSWs, while LBC remains a gold standard for CL diagnosis worldwide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信