基于人工蜂群算法的认知无线电引擎设计

P. M. Pradhan
{"title":"基于人工蜂群算法的认知无线电引擎设计","authors":"P. M. Pradhan","doi":"10.1109/ICEAS.2011.6147139","DOIUrl":null,"url":null,"abstract":"A cognitive radio engine adapts its radio parameters using metaheauristic learning algorithms in order to satisfy certain objectives in a radio environment. In this study, three evolutionary algorithms are used for optimizing the predefined fitness functions in the time varying wireless environment. The performances of genetic algorithm, particle swarm optimization and artificial bee colony algorithm are analysed in different modes of operation and in presence of spectral interference. The simulation results are compared using convergence characteristics and two statistical metrics.","PeriodicalId":273164,"journal":{"name":"2011 International Conference on Energy, Automation and Signal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Design of cognitive radio engine using artificial bee colony algorithm\",\"authors\":\"P. M. Pradhan\",\"doi\":\"10.1109/ICEAS.2011.6147139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cognitive radio engine adapts its radio parameters using metaheauristic learning algorithms in order to satisfy certain objectives in a radio environment. In this study, three evolutionary algorithms are used for optimizing the predefined fitness functions in the time varying wireless environment. The performances of genetic algorithm, particle swarm optimization and artificial bee colony algorithm are analysed in different modes of operation and in presence of spectral interference. The simulation results are compared using convergence characteristics and two statistical metrics.\",\"PeriodicalId\":273164,\"journal\":{\"name\":\"2011 International Conference on Energy, Automation and Signal\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Energy, Automation and Signal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAS.2011.6147139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Energy, Automation and Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAS.2011.6147139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

认知无线电引擎使用元学习算法来调整其无线电参数,以满足无线电环境中的特定目标。本研究采用三种进化算法对时变无线环境下的预定义适应度函数进行优化。分析了遗传算法、粒子群算法和人工蜂群算法在不同运行模式和存在频谱干扰情况下的性能。利用收敛特性和两个统计指标对仿真结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of cognitive radio engine using artificial bee colony algorithm
A cognitive radio engine adapts its radio parameters using metaheauristic learning algorithms in order to satisfy certain objectives in a radio environment. In this study, three evolutionary algorithms are used for optimizing the predefined fitness functions in the time varying wireless environment. The performances of genetic algorithm, particle swarm optimization and artificial bee colony algorithm are analysed in different modes of operation and in presence of spectral interference. The simulation results are compared using convergence characteristics and two statistical metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信