Borel型理想Hilbert级数的多项式时间算法

A. Hashemi
{"title":"Borel型理想Hilbert级数的多项式时间算法","authors":"A. Hashemi","doi":"10.1145/1277500.1277516","DOIUrl":null,"url":null,"abstract":"In this paper, it is shown that the Hilbert series of a Borel type ideal may be computed within a complexity which is polynomial in <i>D</i><sup>n</sup> where <i>n</i> + 1 is the number of unknowns and <i>D</i> is the highest degree of a minimal generator of input (monomial) ideal.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polynomial-time algorithm for Hilbert series of Borel type ideals\",\"authors\":\"A. Hashemi\",\"doi\":\"10.1145/1277500.1277516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it is shown that the Hilbert series of a Borel type ideal may be computed within a complexity which is polynomial in <i>D</i><sup>n</sup> where <i>n</i> + 1 is the number of unknowns and <i>D</i> is the highest degree of a minimal generator of input (monomial) ideal.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文证明了Borel型理想的Hilbert级数可以在复杂度为多项式的Dn内计算,其中n + 1为未知数,D为输入(单项式)理想的最小产生器的最高次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial-time algorithm for Hilbert series of Borel type ideals
In this paper, it is shown that the Hilbert series of a Borel type ideal may be computed within a complexity which is polynomial in Dn where n + 1 is the number of unknowns and D is the highest degree of a minimal generator of input (monomial) ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信