具有拓扑保持约束的基于地标的形状变形

Song Wang, J. Ji, Zhi-Pei Liang
{"title":"具有拓扑保持约束的基于地标的形状变形","authors":"Song Wang, J. Ji, Zhi-Pei Liang","doi":"10.1109/ICCV.2003.1238447","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for landmark-based shape deformation, in which fitting error and shape difference are formulated into a support vector machine (SVM) regression problem. To well describe nonrigid shape deformation, this paper measures the shape difference using a thin-plate spline model. The proposed approach is capable of preserving the topology of the template shape in the deformation. This property is achieved by inserting a set of additional points and imposing a set of linear equality and/or inequality constraints. The underlying optimization problem is solved using a quadratic programming algorithm. The proposed method has been tested using practical data in the context of shape-based image segmentation. Some relevant practical issues, such as missing detected landmarks and selection of the regularization parameter are also briefly discussed.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Landmark-based shape deformation with topology-preserving constraints\",\"authors\":\"Song Wang, J. Ji, Zhi-Pei Liang\",\"doi\":\"10.1109/ICCV.2003.1238447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for landmark-based shape deformation, in which fitting error and shape difference are formulated into a support vector machine (SVM) regression problem. To well describe nonrigid shape deformation, this paper measures the shape difference using a thin-plate spline model. The proposed approach is capable of preserving the topology of the template shape in the deformation. This property is achieved by inserting a set of additional points and imposing a set of linear equality and/or inequality constraints. The underlying optimization problem is solved using a quadratic programming algorithm. The proposed method has been tested using practical data in the context of shape-based image segmentation. Some relevant practical issues, such as missing detected landmarks and selection of the regularization parameter are also briefly discussed.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种新的基于地标的形状变形方法,将拟合误差和形状差异转化为支持向量机(SVM)回归问题。为了更好地描述非刚性形状变形,本文采用薄板样条模型测量形状差异。该方法能够在变形过程中保持模板形状的拓扑结构。这个性质是通过插入一组附加点和施加一组线性等式和/或不等式约束来实现的。底层优化问题采用二次规划算法求解。该方法已在基于形状的图像分割中使用实际数据进行了测试。本文还简要讨论了一些相关的实际问题,如缺少检测到的标志和正则化参数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landmark-based shape deformation with topology-preserving constraints
This paper presents a novel approach for landmark-based shape deformation, in which fitting error and shape difference are formulated into a support vector machine (SVM) regression problem. To well describe nonrigid shape deformation, this paper measures the shape difference using a thin-plate spline model. The proposed approach is capable of preserving the topology of the template shape in the deformation. This property is achieved by inserting a set of additional points and imposing a set of linear equality and/or inequality constraints. The underlying optimization problem is solved using a quadratic programming algorithm. The proposed method has been tested using practical data in the context of shape-based image segmentation. Some relevant practical issues, such as missing detected landmarks and selection of the regularization parameter are also briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信